Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN.
View Article and Find Full Text PDFNifA is a σ activator that turns on bacterial nitrogen fixation under reducing conditions and when fixed cellular nitrogen levels are low. The redox sensing mechanism in NifA is poorly understood. In α- and β-proteobacteria, redox sensing involves two pairs of Cys residues within and immediately following the protein's central AAA domain.
View Article and Find Full Text PDFChlorogenic acid esterases (ChlEs) are a useful class of enzymes that hydrolyze chlorogenic acid (CGA) into caffeic and quinic acids. ChlEs can break down CGA in foods to improve their sensory properties and release caffeic acid in the digestive system to improve the absorption of bioactive compounds. This work presents the structure, molecular dynamics, and biochemical characterization of a ChlE from Lactobacillus helveticus (Lh).
View Article and Find Full Text PDFSunflower meal, a byproduct of sunflower oil pressing, is not commonly used in alkaline baking applications. This is because chlorogenic acid, the main phenolic antioxidant in sunflower seeds, reacts with protein, giving the baked product a green discoloration. Our group previously demonstrated that a chlorogenic acid esterase from Lactobacillus helveticus hydrolyzes chlorogenic acid in sunflower dough cookie formulations, resulting in cookies that were brown instead of green.
View Article and Find Full Text PDFFood Res Int
December 2022
Chlorogenic acid (CGA) is an ester between caffeic and quinic acid. It is found in many foods and reacts with free amino groups in proteins at alkaline pH, leading to the formation of an undesirable green pigment in sunflower seed-derived ingredients. This paper presents the biochemical characterization and application of a highly active chlorogenic acid esterase from Lactobacillus helveticus.
View Article and Find Full Text PDFNitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N) to ammonia (NH). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO.
View Article and Find Full Text PDFThe highly contagious disease tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis (Mtb), which has been evolving drug resistance at an alarming rate. Like all human pathogens, Mtb requires iron for growth and virulence. Consequently, Mtb iron transport is an emerging drug target.
View Article and Find Full Text PDFNitrogenase is a complex, bacterial enzyme that catalyzes the ATP-dependent reduction of dinitrogen (N) to ammonia (NH). In its most prevalent form, it consists of two proteins, the catalytic molybdenum-iron protein (MoFeP) and its specific reductase, the iron protein (FeP). A defining feature of nitrogenase is that electron and proton transfer processes linked to substrate reduction are synchronized by conformational changes driven by ATP-dependent FeP-MoFeP interactions.
View Article and Find Full Text PDFOne of the most common assays for nucleoside triphosphatase (NTPase) activity entails the quantification of inorganic phosphate (P) as a colored phosphomolybdate complex at low pH. While this assay is very sensitive, it is not selective for P in the presence of labile organic phosphate compounds (OPCs). Since NTPase activity assays typically require a large excess of OPCs, such as nucleotides, selectivity for P in the presence of OPCs is often critical in evaluating enzyme activity.
View Article and Find Full Text PDFThe P-cluster is a unique iron-sulfur center that likely functions as a dynamic electron (e(-)) relay site between the Fe-protein and the catalytic FeMo-cofactor in nitrogenase. The P-cluster has been shown to undergo large conformational changes upon 2-e(-) oxidation which entail the coordination of two of the Fe centers to a Ser side chain and a backbone amide N, respectively. Yet, how and if this 2-e(-) oxidized state (P(OX)) is involved in catalysis by nitrogenase is not well established.
View Article and Find Full Text PDFNitrogenase is the only enzyme that can convert atmospheric dinitrogen (N2) into biologically usable ammonia (NH3). To achieve this multielectron redox process, the nitrogenase component proteins, MoFe-protein (MoFeP) and Fe-protein (FeP), repeatedly associate and dissociate in an ATP-dependent manner, where one electron is transferred from FeP to MoFeP per association. Here, we provide experimental evidence that encounter complexes between FeP and MoFeP play a functional role in nitrogenase catalysis.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) acquires non-heme iron through salicylate-derived siderophores termed mycobactins whereas heme iron is obtained through a cascade of heme uptake proteins. Three proteins are proposed to mediate Mtb heme iron uptake, a secreted heme transporter (Rv0203), and MmpL3 and MmpL11, which are potential transmembrane heme transfer proteins. Furthermore, MhuD, a cytoplasmic heme-degrading enzyme, has been identified.
View Article and Find Full Text PDFMycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival.
View Article and Find Full Text PDFSeveral gram-positive pathogenic bacteria employ near-iron transporter (NEAT) domains to acquire heme from hemoglobin during infection. However, the structural requirements and mechanism of action for NEAT-mediated heme extraction remains unknown. Bacillus anthracis exhibits a rapid growth rate during systemic infection, suggesting that the bacterium expresses efficient iron acquisition systems.
View Article and Find Full Text PDFWithdrawn by the publisher.
View Article and Find Full Text PDFTo replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin.
View Article and Find Full Text PDFThe secreted Mycobacterium tuberculosis (Mtb) heme binding protein Rv0203 has been shown to play a role in Mtb heme uptake. In this work, we use spectroscopic (absorption, electron paramagnetic resonance, and magnetic circular dichrosim) methods to further characterize the heme coordination environments of His-tagged and native protein forms, Rv0203-His and Rv0203-notag, respectively. Rv0203-His binds the heme molecule through bis-His coordination and is low-spin in both ferric and ferrous oxidation states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2011
Mycobacterium tuberculosis must import iron from its host for survival, and its siderophore-dependent iron acquisition pathways are well established. Here we demonstrate a newly characterized pathway, whereby M. tuberculosis can use free heme and heme from hemoglobin as an iron source.
View Article and Find Full Text PDF