Publications by authors named "Cedric Loubat"

The molecular simulation of interfacial systems is a matter of debate because of the choice of many input parameters that can affect significantly the performance of the force field of reproducing the surface tension and the coexisting densities. After developing a robust methodology for the calculation of the surface tension on a Lennard-Jones fluid, we apply it with different force fields to calculate the density and surface tension of pure constituents of epoxy resins. By using the model that best reproduces the experimental density and surface tension, we investigate the impact of composition in mass fraction on uncured epoxy resins and the effects of degree of cross-linking on cured resins.

View Article and Find Full Text PDF

All-atom molecular dynamics (MD) simulations were performed with the CHARMM force field to characterize various epoxy resins, such as aliphatic and bisphenol-based resins. A multistep cross-linking algorithm was established, and key properties such as density, glass temperature, and elastic modulus were calculated. A quantitative comparison was made and was proven to be in good agreement with experimental data, with average absolute deviations between experiments and molecular simulation comprised between 2% and 12%.

View Article and Find Full Text PDF

We reported molecular simulations of the interactions among water, an epoxy prepolymer diglycidic ether of bisphenol A (DGEBA), and a hardener isophorone diamine (IPDA) on an aluminum surface. This work proposes a comprehensive thermodynamic characterization of the adhesion process from the calculation of different interfacial tensions. The cross-interactions between the atoms of the metal surface and different molecules are adjusted so as to reproduce the experimental work of adhesion.

View Article and Find Full Text PDF

Optical imaging has become a widely used technique and is still under development for clinical diagnostics and treatment applications. For further development of the field, researchers have put much effort into the development of inorganic nanoparticles (NPs) as imaging probes. In this trend, our laboratory developed ZnGaOCr (ZGO) nanoparticles, which can emit a bright persistent luminescence signal through the tissue transparency window for dozens of minutes and can be activated with visible irradiation.

View Article and Find Full Text PDF

Oxidative stress, which is one of the main harmful mechanisms of pathologies including ischemic stroke, contributes to both neurons and endothelial cell damages, leading to vascular lesions. Although many antioxidants are tested in preclinical studies, no treatment is currently available for stroke patients. Since cerium oxide nanoparticles (CNPs) exhibit remarkable antioxidant capacities, the objective is to develop an innovative coating to enhance CNPs biocompatibility without disrupting their antioxidant capacities or enhance their toxicity.

View Article and Find Full Text PDF

Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, which are harmful molecules produced in oxidative stress-associated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood.

View Article and Find Full Text PDF

Recent surveys have shown that the number of nanoparticle-based formulations actually used at a clinical level is significantly lower than that expected a decade ago. One reason for this is that the physicochemical properties of nanoparticles fall short for handling the complexity of biological environments and preventing nonspecific protein adsorption. In this study, we address the issue of the interactions of plasma proteins with polymer-coated surfaces.

View Article and Find Full Text PDF