Publications by authors named "Cedric Lood"

The Southern Ocean microbial ecosystem, with its pronounced seasonal shifts, is vulnerable to the impacts of climate change. Since viruses are key modulators of microbial abundance, diversity, and evolution, we need a better understanding of the effects of seasonality on the viruses in this region. Our comprehensive exploration of DNA viral diversity in the Southern Ocean reveals a unique and largely uncharted viral landscape, of which 75% was previously unidentified in other oceanic areas.

View Article and Find Full Text PDF
Article Synopsis
  • Enterobacter cloacae, an antibiotic-resistant bacterium found in food products like chicken, poses a significant food safety concern, prompting the investigation of bacteriophages as a potential solution for controlling bacterial growth.
  • Researchers isolated a potent lytic bacteriophage, vB_EclM_HK6, which effectively infected 8 out of 16 Enterobacter cloacae strains, demonstrating strong antibacterial properties without any cytotoxic effects on human cells.
  • The bacteriophage showed remarkable stability under various conditions (thermal, pH, shearing stress) and was able to significantly reduce bacterial counts in raw chicken and other food products, highlighting its promise as a biocontrol agent in
View Article and Find Full Text PDF

The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen and the respiratory microbiome as our model system.

View Article and Find Full Text PDF

Given the increasing threat of antimicrobial resistance, scientists are urgently seeking adjunct antimicrobial strategies, such as phage therapy (PT). However, despite promising results for the treatment of musculoskeletal infections in our center, crucial knowledge gaps remain. Therefore, a prospective observational study (PHAGEFORCE) and a multidisciplinary approach was set up to achieve and optimize standardized treatment guidelines.

View Article and Find Full Text PDF

The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaA) or restore (PdaA) the pdaA open reading frame.

View Article and Find Full Text PDF

Generalized transduction is pivotal in bacterial evolution but lacks comprehensive understanding regarding the facilitating features and variations among phages. We addressed this gap by sequencing and comparing the transducing particle content of three different Salmonella Typhimurium phages (i.e.

View Article and Find Full Text PDF

In contrast to the many reports of successful real-world cases of personalized bacteriophage therapy (BT), randomized controlled trials of non-personalized bacteriophage products have not produced the expected results. Here we present the outcomes of a retrospective observational analysis of the first 100 consecutive cases of personalized BT of difficult-to-treat infections facilitated by a Belgian consortium in 35 hospitals, 29 cities and 12 countries during the period from 1 January 2008 to 30 April 2022. We assessed how often personalized BT produced a positive clinical outcome (general efficacy) and performed a regression analysis to identify functional relationships.

View Article and Find Full Text PDF

is a bacterial species commonly associated with meat spoilage. However, some strains exhibit preservative effects due to bacteriocin production. Here, we report the complete genome sequences for two strains, 4010 and AMS1.

View Article and Find Full Text PDF

Therapeutic bacteriophages (phages) are primarily chosen based on their in vitro bacteriolytic activity. Although anti-phage antibodies are known to inhibit phage infection, the influence of other immune system components is less well known. An important anti-bacterial and anti-viral innate immune system that may interact with phages is the complement system, a cascade of proteases that recognizes and targets invading microorganisms.

View Article and Find Full Text PDF

Recent changes in the taxonomy of the family have led to the delineation of three new genera (, and ). However, the genus remains the most densely populated and displays a broad genetic diversity. are able to produce a wide variety of secondary metabolites which drives important ecological functions and have a great impact in sustaining their lifestyles.

View Article and Find Full Text PDF

is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. Here, we characterized Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range which likely uses lipopolysaccharide (LPS) as a phage receptor.

View Article and Find Full Text PDF

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus.

View Article and Find Full Text PDF

This article summarises the activities of the Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses for the period of March 2021-March 2022. We provide an overview of the new taxa proposed in 2021, approved by the Executive Committee, and ratified by vote in 2022. Significant changes to the taxonomy of bacterial viruses were introduced: the paraphyletic morphological families Podoviridae, Siphoviridae, and Myoviridae as well as the order Caudovirales were abolished, and a binomial system of nomenclature for species was established.

View Article and Find Full Text PDF

Post-operative bacterial infections are a leading cause of mortality and morbidity after ongoing liver transplantation. Bacteria causing these infections in the hospital setting can exhibit high degrees of resistance to multiple types of antibiotics, which leads to major therapeutic hurdles. Alternate ways of treating these antibiotic-resistant infections are thus urgently needed.

View Article and Find Full Text PDF

Summary: Missing regions in short-read assemblies of prokaryote genomes are often attributed to biases in sequencing technologies and to repetitive elements, the former resulting in low sequencing coverage of certain loci and the latter to unresolved loops in the de novo assembly graph. We developed SASpector, a command-line tool that compares short-read assemblies (draft genomes) to their corresponding closed assemblies and extracts missing regions to analyze them at the sequence and functional level. SASpector allows to benchmark the need for resolved genomes, can be integrated into pipelines to control the quality of assemblies, and could be used for comparative investigations of missingness in assemblies for which both short-read and long-read data are available in the public databases.

View Article and Find Full Text PDF

A 30-year-old bombing victim with a fracture-related pandrug-resistant Klebsiella pneumoniae infection after long-term (>700 days) antibiotic therapy is treated with a pre-adapted bacteriophage along with meropenem and colistin, followed by ceftazidime/avibactam. This salvage therapy results in objective clinical, microbiological and radiological improvement of the patient's wounds and overall condition. In support, the bacteriophage and antibiotic combination is highly effective against the patient's K.

View Article and Find Full Text PDF

In bacteriophage therapy, the combination of different phages into a single cocktail is of critical importance to overcome the narrow host range of single phage isolates. Today, the design of therapeutic cocktails is often akin to a black box and relies largely on intuition and (pre-)availability of isolates in local collections. Here we show that straightforward host range analysis can disclose design rules and we propose to apply/translate a data mining approach, historically applied in the field of marketing ('shopping cart analysis') to explore patterns in phage combinations.

View Article and Find Full Text PDF

Machine learning has been broadly implemented to investigate biological systems. In this regard, the field of phage biology has embraced machine learning to elucidate and predict phage-host interactions, based on receptor-binding proteins, (anti-)defense systems, prophage detection, and life cycle recognition. Here, we highlight the enormous potential of integrating information from omics data with insights from systems biology to better understand phage-host interactions.

View Article and Find Full Text PDF

Historically, virus taxonomy has been limited to describing viruses that were readily cultivated in the laboratory or emerging in natural biomes. Metagenomic analyses, single-particle sequencing, and database mining efforts have yielded new sequence data on an astounding number of previously unknown viruses. As metagenomes are relatively free of biases, these data provide an unprecedented insight into the vastness of the virosphere, but to properly value the extent of this diversity it is critical that the viruses are taxonomically classified.

View Article and Find Full Text PDF

is considered one of the most critical multidrug-resistant pathogens and urgently requires new therapeutic strategies. Capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) are the major virulence factors protecting against the immune response and thus may be targeted by phage-based therapeutics such as polysaccharides-degrading enzymes. Since the emergence of resistance to antibacterials is generally considered undesirable, in this study, the genetic and phenotypic characteristics of resistance to the phage-borne CPS-degrading depolymerase and its effect on virulence were investigated.

View Article and Find Full Text PDF

Since the beginning of the 20th century, bacteriophages (phages), i.e., viruses that infect bacteria, have been used as antimicrobial agents for treating various infections.

View Article and Find Full Text PDF

is the model and member of the family , which is composed of tailless, icosahedral, and membrane-containing bacteriophages. Interest in these viruses has greatly increased in recent years as they are thought to be an evolutionary link between diverse groups of prokaryotic and eukaryotic viruses. Additionally, betatectiviruses infect bacteria of the group, which are known for their applications in industry and notorious since it contains many pathogens.

View Article and Find Full Text PDF