Publications by authors named "Cedric Lemaire"

The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions.

View Article and Find Full Text PDF

Knowledge on variations of drought resistance traits are needed to predict the potential of trees to acclimate to coming severe drought events. Xylem vulnerability to embolism is a key parameter related to such droughts, and its phenotypic variability relies mainly on environmental plasticity. We investigated the structural determinants controlling the plasticity of vulnerability to embolism, focusing on the key elements involved in the air bubble entry in vessels, especially the intervessel pits.

View Article and Find Full Text PDF

The genus comprises important species in forestry not only for their productive value but also for their ability to withstand drought. Hence an evaluation of inter- and intraspecific variation in drought tolerance is important for selecting the best adapted species and provenances for future afforestation. The presence of long vessels makes it difficult to assess xylem vulnerability to embolism in oak.

View Article and Find Full Text PDF

While the xylem hydraulic properties, such as vulnerability to cavitation (VC), are of paramount importance in drought resistance, their genetic determinants remain unexplored. There is evidence that pectins and their methylation pattern are involved, but the detail of their involvement and the corresponding genes need to be clarified. We analyzed the hydraulic properties of the 35S::PME1 transgenic aspen that ectopically under- or over-express a xylem-abundant pectin methyl esterase, PtxtPME1.

View Article and Find Full Text PDF