In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets.
View Article and Find Full Text PDFHydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS.
View Article and Find Full Text PDFAtmospheric pressure plasma jets have been shown to impact several cancer cell lines, both in vitro and in vivo. These effects are based on the biochemistry of the reactive oxygen and nitrogen species generated by plasmas in physiological liquids, referred to as plasma-conditioned liquids. Plasma-conditioned media are efficient in the generation of reactive species, inducing selective cancer cell death.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) is a potential anticancer therapy. CAP has cytotoxic effects when applied either directly to cancer cell cultures or indirectly through plasma-conditioned liquids. This protocol describes how to treat adherent cultures of human cancer cell lines with CAP or plasma-conditioned medium and determine cell viability following treatment.
View Article and Find Full Text PDFAtmospheric pressure plasma jets generate reactive oxygen and nitrogen species (RONS) in liquids and biological media, which find application in the new area of plasma medicine. These plasma-treated liquids were demonstrated recently to possess selective properties on killing cancer cells and attracted attention toward new plasma-based cancer therapies. These allow for local delivery by injection in the tumor but can be quickly washed away by body fluids.
View Article and Find Full Text PDFLow-temperature atmospheric pressure plasma was demonstrated to have an ability to generate different reactive oxygen and nitrogen species (RONS), showing wide biological actions. Within this study, mesoporous silica nanoparticles (NPs) and FeO/NPs catalysts were produced and embedded in the polysaccharide matrix of chitosan/curdlan/hydroxyapatite biomaterial. Then, basic physicochemical and structural characterization of the NPs and biomaterials was performed.
View Article and Find Full Text PDFIn the last years, great advances have been made in therapies based in cold atmospheric plasmas (CAP). CAP generate reactive oxygen and nitrogen species (RONS) which can be transferred to liquids. These CAP activated liquids display the same biological efficacy (i.
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common primary bone tumor but current therapies still have poor prognosis. Cold Atmospheric Plasma (CAP) and Plasma activated media (PAM) have shown potential to eliminate cancer cells in other tumors. It is thought that Reactive Oxygen and Nitrogen species (RONS) in PAM are key players but cell culture media composition alters treatment outcomes and data interpretation due to scavenging of certain RONS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Melanoma is malignant skin cancer occurring with increasing prevalence with no effective treatment. A unique feature of melanoma cells is that they require higher concentrations of ltyrosine (l-tyr) for expansion than normal cells. As such, it has been demonstrated that dietary l-tyr restriction lowers systemic l-tyr and suppresses melanoma advancement in mice.
View Article and Find Full Text PDFCell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles. In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction.
View Article and Find Full Text PDFThe creation of artificial organelles is a new paradigm in medical therapy that aims to substitute for missing cellular function by replenishing a specific cellular task. Artificial organelles tackle the challenge of mimicking metabolism, which is the set of chemical reactions that occur within a cell, mainly catalyzed by enzymes. So far, the few reported carriers able to conduct enzymatic reactions intracellularly are based on single-compartment carriers.
View Article and Find Full Text PDF