We propose and experimentally demonstrate an intra-cavity transverse mode-switchable fiber laser based on a mode-selective photonic lantern and a few-mode Er-doped fiber amplifier. The six lowest-order LP modes can lase independently and are switchable by changing the input port of the photonic lantern. We measured the slope efficiency, mode intensity profile, and optical spectrum of each lasing mode.
View Article and Find Full Text PDFErbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er -doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances.
View Article and Find Full Text PDFUsing a combination of experimental techniques such as optical absorption, Raman scattering, continuous wave and pulse Electron Spin Resonance (ESR), we characterize a set of γ-irradiated Yb(3+) doped silica glass preforms with different contents of phosphorous and aluminum. We demonstrate that when P is introduced in excess compared to Al, nearly no radiodarkening is induced by γ-rays. On the other hand, when Al>P, a large absorption band is induced by radiation.
View Article and Find Full Text PDFYtterbium doped fiber lasers are known to be impacted by the creation of color centers during lasing so called photodarkening. This defect creation was investigated in a spectroscopic point of view, showing the presence of thulium traces (ppb) in the ytterbium doped fiber. Moreover, this contamination exhibit luminescence in the UV range under 976 nm excitation of the ytterbium-doped fiber.
View Article and Find Full Text PDF