Publications by authors named "Cedric Godefroy"

HIV-1 Tat is a key viral protein that stimulates several steps of viral gene expression. Tat is especially required for the transcription of viral genes. Nevertheless, it is still not clear if and how Tat is incorporated into HIV-1 virions.

View Article and Find Full Text PDF

Septins are ubiquitous cytoskeletal filaments that interact with the inner plasma membrane and are essential for cell division in eukaryotes. In cellular contexts, septins are often localized at micrometric Gaussian curvatures, where they assemble onto ring-like structures. The behavior of budding yeast septins depends on their specific interaction with inositol phospholipids, enriched at the inner leaflet of the plasma membrane.

View Article and Find Full Text PDF
Article Synopsis
  • - TAT-RasGAP is a peptide that can penetrate cells and has properties that make it effective against certain cancer and microbial cells, killing them without triggering traditional cell death pathways.
  • - The peptide works by binding to and disrupting specific lipids in the inner layer of the cell membrane, namely phosphatidylinositol-bisphosphate (PIP) and phosphatidylserine (PS), influencing the cell's susceptibility to its effects.
  • - A specific mutant of the peptide (W317A TAT-RasGAP) shows reduced effectiveness due to its inability to bind and disrupt these membranes properly, highlighting the importance of its binding characteristics for killing cells through a necrotic process.
View Article and Find Full Text PDF

Supported lipid bilayers represent a very attractive way to mimic biological membranes, especially to investigate molecular mechanisms associated with the lateral segregation of membrane components. Observation of these model membranes with high-speed atomic force microscopy (HS-AFM) allows the capture of both topography and dynamics of membrane components, with a spatial resolution in the nanometer range and image capture time of less than 1 s. In this context, we have developed new protocols adapted for HS-AFM to form supported lipid bilayers on small mica disks using the vesicle fusion or Langmuir-Blodgett methods.

View Article and Find Full Text PDF

Influenza virus infection is a serious public health problem in the world, and understanding the molecular mechanisms involved in viral replication is crucial. In this paper, we used a minimalist approach based on a lipid bilayer supported on mica, which we imaged by atomic force microscopy (AFM) in a physiological buffer, to analyze the different steps of influenza fusion, from the interaction of intact viruses with the supported bilayer to their complete fusion. Our results show that sialic acid recognition and priming upon acidification are sufficient for a complete fusion with the host cell membrane.

View Article and Find Full Text PDF

Milk sphingomyelin (MSM) and cholesterol segregate into domains in the outer bilayer membrane surrounding milk fat globules. To elucidate the morphology and mechanical properties of theses domains, supported lipid bilayers with controlled molar proportions of MSM, dioleoylphosphatidylcholine (DOPC) and cholesterol were produced in buffer mimicking conditions of the milk aqueous phase. Atomic force microscopy imaging showed that (i) for T < 35 °C MSM segregated in gel phase domains protruding above the fluid phase, (ii) the addition of 20 mol % cholesterol resulted in smaller and more elongated l(o) phase domains than in equimolar MSM/DOPC membranes, (iii) the MSM/cholesterol-enriched l(o) phase domains were less salient than the MSM gel phase domains.

View Article and Find Full Text PDF

SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA.

View Article and Find Full Text PDF

The ability to observe interactions of drugs with cell membranes is an important area in pharmaceutical research. However, these processes are often difficult to understand due to the dynamic nature of cell membranes. Therefore, artificial systems composed of lipids have been used to study membrane properties and their interaction with drugs.

View Article and Find Full Text PDF

SpoIIIE/FtsK are membrane-anchored, ATP-fuelled, directional motors responsible for chromosomal segregation in bacteria. Directionality in these motors is governed by interactions between specialized sequence-recognition modules (SpoIIIE-γ/FtsK-γ) and highly skewed chromosomal sequences (SRS/KOPS). Using a new combination of ensemble and single-molecule methods, we dissect the series of steps required for SRS localization and motor activation.

View Article and Find Full Text PDF

The lipid-layer technique allows reconstituting transmembrane proteins at a high density in microns size planar membranes and suspended to a lipid monolayer at the air/water interface. In this paper, we transferred these membranes onto two hydrophobic substrates for further structural analysis of reconstituted proteins by Atomic Force Microscopy (AFM). We used a mica sheet covered by a lipid monolayer or a sheet of highly oriented pyrolytic graphite (HOPG) to trap the lipid monolayer at the interface and the suspended membranes.

View Article and Find Full Text PDF

Hepatitis B virus envelope is mainly composed of three forms of the same protein expressed from different start codons of the same open reading frame. The smaller form named S protein corresponds to the C-terminal common region and represents about 80% of the envelope proteins. It is mainly referred as hepatitis B virus surface antigen (HBsAg).

View Article and Find Full Text PDF