BMC Bioinformatics
November 2024
Background: Plasmids play a major role in the transfer of antimicrobial resistance (AMR) genes among bacteria via horizontal gene transfer. The identification of plasmids in short-read assemblies is a challenging problem and a very active research area. Plasmid binning aims at detecting, in a draft genome assembly, groups (bins) of contigs likely to originate from the same plasmid.
View Article and Find Full Text PDFReconstructing ancestral gene orders from the genome data of extant species is an important problem in comparative and evolutionary genomics. In a phylogenomics setting that accounts for gene family evolution through gene duplication and gene loss, the reconstruction of ancestral gene orders involves several steps, including multiple sequence alignment, the inference of reconciled gene trees, and the inference of ancestral syntenies and gene adjacencies. For each of the steps of such a process, several methods can be used and implemented using a growing corpus of, often parameterized, tools; in practice, interfacing such tools into an ancestral gene order reconstruction pipeline is far from trivial.
View Article and Find Full Text PDFMotivation: Transcriptomic long-read (LR) sequencing is an increasingly cost-effective technology for probing various RNA features. Numerous tools have been developed to tackle various transcriptomic sequencing tasks (e.g.
View Article and Find Full Text PDFIdentification of plasmids from sequencing data is an important and challenging problem related to antimicrobial resistance spread and other One-Health issues. We provide a new architecture for identifying plasmid contigs in fragmented genome assemblies built from short-read data. We employ graph neural networks (GNNs) and the assembly graph to propagate the information from nearby nodes, which leads to more accurate classification, especially for short contigs that are difficult to classify based on sequence features or database searches alone.
View Article and Find Full Text PDFMotivation: The analysis of bacterial isolates to detect plasmids is important due to their role in the propagation of antimicrobial resistance. In short-read sequence assemblies, both plasmids and bacterial chromosomes are typically split into several contigs of various lengths, making identification of plasmids a challenging problem. In plasmid contig binning, the goal is to distinguish short-read assembly contigs based on their origin into plasmid and chromosomal contigs and subsequently sort plasmid contigs into bins, each bin corresponding to a single plasmid.
View Article and Find Full Text PDFAlternative splicing (AS) is an important mechanism in the development of many cancers, as novel or aberrant AS patterns play an important role as an independent onco-driver. In addition, cancer-specific AS is potentially an effective target of personalized cancer therapeutics. However, detecting AS events remains a challenging task, especially if these AS events are novel.
View Article and Find Full Text PDFSingle-cell RNA sequencing allows for characterizing the gene expression landscape at the cell type level. However, because of its use of short-reads, it is severely limited at detecting full-length features of transcripts such as alternative splicing. New library preparation techniques attempt to extend single-cell sequencing by utilizing both long-reads and short-reads.
View Article and Find Full Text PDFBackground: The advent of next-generation sequencing technologies empowered a wide variety of transcriptomics studies. A widely studied topic is gene fusion which is observed in many cancer types and suspected of having oncogenic properties. Gene fusions are the result of structural genomic events that bring two genes closely located and result in a fused transcript.
View Article and Find Full Text PDFThe Small Parsimony Problem (SPP) aims at finding the gene orders at internal nodes of a given phylogenetic tree such that the overall genome rearrangement distance along the tree branches is minimized. This problem is intractable in most genome rearrangement models, especially when gene duplication and loss are considered. In this work, we describe an Integer Linear Program algorithm to solve the SPP for natural genomes, i.
View Article and Find Full Text PDFWe introduce a new cell population score called SpecEnr (specific enrichment) and describe a method that discovers robust and accurate candidate biomarkers from flow cytometry data. Our approach identifies a new class of candidate biomarkers we define as driver cell populations, whose abundance is associated with a sample class (e.g.
View Article and Find Full Text PDFThird-generation sequencing technologies from companies such as Oxford Nanopore and Pacific Biosciences have paved the way for building more contiguous and potentially gap-free assemblies. The larger effective length of their reads has provided a means to overcome the challenges of short to mid-range repeats. Currently, accurate long read assemblers are computationally expensive, whereas faster methods are not as accurate.
View Article and Find Full Text PDFBackground: In the field of genome rearrangement algorithms, models accounting for gene duplication lead often to hard problems. For example, while computing the pairwise distance is tractable in most duplication-free models, the problem is NP-complete for most extensions of these models accounting for duplicated genes. Moreover, problems involving more than two genomes, such as the genome median and the Small Parsimony problem, are intractable for most duplication-free models, with some exceptions, for example the Single-Cut-or-Join (SCJ) model.
View Article and Find Full Text PDFGiven a set of species whose evolution is represented by a species tree, a gene family is a group of genes having evolved from a single ancestral gene. A gene family evolves along the branches of a species tree through various mechanisms, including-but not limited to-speciation ([Formula: see text]), gene duplication ([Formula: see text]), gene loss ([Formula: see text]), and horizontal gene transfer ([Formula: see text]). The reconstruction of a gene tree representing the evolution of a gene family constrained by a species tree is an important problem in phylogenomics.
View Article and Find Full Text PDFBackground: New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from 'finished'. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies.
View Article and Find Full Text PDFBackground: Bacterial pathogens exhibit an impressive amount of genomic diversity. This diversity can be informative of evolutionary adaptations, host-pathogen interactions, and disease transmission patterns. However, capturing this diversity directly from biological samples is challenging.
View Article and Find Full Text PDFMotivation: Plasmids are ubiquituous in bacterial genomes, and have been shown to be involved in important evolutionary processes, in particular the acquisition of antimicrobial resistance. However separating chromosomal contigs from plasmid contigs and assembling the later is a challenging problem.
Results: We introduce HyAsP, a tool that identifies, bins and assembles plasmid contigs following a hybrid approach based on a database of known plasmids genes and a greedy assembly algorithm.
Motivation: Next-Generation Sequencing has led to the availability of massive genomic datasets whose processing raises many challenges, including the handling of sequencing errors. This is especially pertinent in cancer genomics, e.g.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
July 2019
Ancestral genome reconstruction is an important task to analyze the evolution of genomes. Recent progress in sequencing ancient DNA led to the publication of so-called paleogenomes and allows the integration of this sequencing data in genome evolution analysis. However, the de novo assembly of ancient genomes is usually fragmented due to DNA degradation over time among others.
View Article and Find Full Text PDFBackground: Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions.
Results: We present a computational method, ADSEQ, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats.
causes the diarrheal disease known as giardiasis; transmission through contaminated surface water is common. The protozoan parasite's genetic diversity has major implications for human health and epidemiology. To determine the extent of transmission from wildlife through surface water, we performed whole-genome sequencing (WGS) to characterize 89 isolates from both outbreak and sporadic infections: 29 isolates from raw surface water, 38 from humans, and 22 from veterinary sources.
View Article and Find Full Text PDFMotivation: Identification of cell populations in flow cytometry is a critical part of the analysis and lays the groundwork for many applications and research discovery. The current paradigm of manual analysis is time consuming and subjective. A common goal of users is to replace manual analysis with automated methods that replicate their results.
View Article and Find Full Text PDFMLST (multi-locus sequence typing) is a classic technique for genotyping bacteria, widely applied for pathogen outbreak surveillance. Traditionally, MLST is based on identifying sequence types from a small number of housekeeping genes. With the increasing availability of whole-genome sequencing data, MLST methods have evolved towards larger typing schemes, based on a few hundred genes [core genome MLST (cgMLST)] to a few thousand genes [whole genome MLST (wgMLST)].
View Article and Find Full Text PDFComparative genomics considers the detection of similarities and differences between extant genomes, and, based on more or less formalized hypotheses regarding the involved evolutionary processes, inferring ancestral states explaining the similarities and an evolutionary history explaining the differences. In this chapter, we focus on the reconstruction of the organization of ancient genomes into chromosomes. We review different methodological approaches and software, applied to a wide range of datasets from different kingdoms of life and at different evolutionary depths.
View Article and Find Full Text PDFis the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human pathogens, including the ancient strains responsible for outbreaks of the bubonic plague in London in the 14th century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a detailed study of genome rearrangements.
View Article and Find Full Text PDFMotivation: Third-generation sequencing (TGS) platforms that generate long reads, such as PacBio and Oxford Nanopore technologies, have had a dramatic impact on genomics research. However, despite recent improvements, TGS reads suffer from high-error rates and the development of read correction methods is an active field of research. This motivates the need to develop tools that can evaluate the accuracy of noisy long reads correction tools.
View Article and Find Full Text PDF