Electrokinetic energy harvesting from evaporation-driven flows in porous materials has recently been the subject of numerous studies, particularly with the development of nanomaterials with high conversion efficiencies. The configuration in which the energy conversion element is located upstream of the element which passively drives the evaporative flow has rarely been studied. However, this configuration offers the possibility of increasing the harvested energy simply by increasing the evaporation surface area and/or the hydraulic resistance of the energy conversion element.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
In this work, we present a Fabry-Perot interferometer (FPI) based on a polymer microtip for water content determination in both the gas and liquid phase. The polymer tip of pentaerythritol triacrylate (PETA) is fabricated at the end of an optical fiber by self-guiding photopolymerization, forming at the same time a low-fineness Fabry-Perot interferometer and a sensing layer for water thanks to hydroxyl groups present in PETA. The PETA tip shows a clear interferometric signal, which is highly sensitive to the change of the water content in the environment.
View Article and Find Full Text PDFFiber optics offer an emerging platform for chemical and biological sensors when engineered with appropriate materials. However, the large aspect ratio makes the optical fiber a rather challenging substrate for standard microfabrication techniques. In this work, the cleaved end of an optical fiber is used as a fabrication platform for cantilever sensors based on functional polymers.
View Article and Find Full Text PDFFlexible dielectrics that harvest mechanical energy via electrostatic effects are excellent candidates as power sources for wearable electronics or autonomous sensors. The integration of a soft dielectric composite (polydimethylsiloxane PDMS-carbon black CB) into two mechanical energy harvesters is here presented. Both are based on a similar cantilever beam but work on different harvesting principles: variable capacitor and triboelectricity.
View Article and Find Full Text PDFOrganic semiconductors (OSCs) are promising transducer materials when applied in organic field-effect transistors (OFETs) taking advantage of their electrical properties which highly depend on the morphology of the semiconducting film. In this work, the effects of OSC thickness (ranging from 5 to 15 nm) on the piezoresistive sensitivity of a high-performance p-type organic semiconductor, namely dinaphtho [2,3-b:2,3-f] thieno [3,2-b] thiophene (DNTT), were investigated. Critical thickness of 6 nm thin film DNTT, thickness corresponding to the appearance of charge carrier percolation paths in the material, was demonstrated to be highly sensitive to mechanical strain.
View Article and Find Full Text PDFJ Biomed Mater Res A
February 2020
The native microenvironment of mesenchymal stem cells (hMSCs)-the extracellular matrix (ECM), is a complex and heterogenous environment structured at different scales. The present study aims at mimicking the hierarchical microorganization of proteins or growth factors within the ECM using the photolithography technique. Polyethylene terephthalate substrates were used as a model material to geometrically defined regions of RGD + BMP-2 or RDG + OGP mimetic peptides.
View Article and Find Full Text PDFIn view of the extensive increase of flexible devices and wearable electronics, the development of polymer micro-electro-mechanical systems (MEMS) is becoming more and more important since their potential to meet the multiple needs for sensing applications in flexible electronics is now clearly established. Nevertheless, polymer micromachining for MEMS applications is not yet as mature as its silicon counterpart, and innovative microfabrication techniques are still expected. We show in the present work an emerging and versatile microfabrication method to produce arbitrary organic, spatially resolved micro-structures, starting from dilute inks, and with possibly a large choice of materials.
View Article and Find Full Text PDFCell morphological analysis has long been used in cell biology and physiology for abnormality identification, early cancer detection, and dynamic change analysis under specific environmental stresses. This work reports on the remote mapping of cell 3D morphology with an in-plane resolution limited by optics and an out-of-plane accuracy down to a tenth of the optical wavelength. For this, GHz coherent acoustic phonons and their resonance harmonics were tracked by means of an ultrafast opto-acoustic technique.
View Article and Find Full Text PDFCombining the actuation of conducting polymers with additional functionalities is an interesting fundamental scientific challenge and increases their application potential. Herein we demonstrate the possibility of direct integration of a miniaturized light emitting diode (LED) in a polypyrrole (PPy) matrix in order to achieve simultaneous wireless actuation and light emission. A light emitting diode is used as a part of an electroactive surface on which electrochemical polymerization allows direct incorporation of the electronic device into the polymer.
View Article and Find Full Text PDFMicromachines (Basel)
April 2018
Polymer Micro ElectroMechanical Systems (MEMS) have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
Micro-electromechanical systems (MEMS) made of organic materials have attracted efforts for the development a new generation of physical, chemical, and biological sensors, for which the electromechanical sensitivity is the current major concern. Here, we present an organic MEMS made of a rubrene single-crystal air-gap transistor. Applying mechanical pressure on the semiconductor results in high variations in drain current: an unparalleled gauge factor above 4000 has been measured experimentally.
View Article and Find Full Text PDFThe relationship between charge transport and surface morphology is investigated by utilizing rubrene single crystals of varying thicknesses. In the case of pristine crystals, the surface conductivities decrease exponentially as the crystal thickness increases until ∼4 μm, beyond which the surface conductivity saturates. Investigation of the surface morphology using optical and atomic force microscopy reveals that thicker crystals have a higher number of molecular steps, increasing the overall surface roughness compared with thin crystals.
View Article and Find Full Text PDFIncorporating functional molecules into sensor devices is an emerging area in molecular electronics that aims at exploiting the sensitivity of different molecules to their environment and turning it into an electrical signal. Among the emergent and integrated sensors, microelectromechanical systems (MEMS) are promising for their extreme sensitivity to mechanical events. However, to bring new functions to these devices, the functionalization of their surface with molecules is required.
View Article and Find Full Text PDFThe growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns.
View Article and Find Full Text PDFTwo-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor.
View Article and Find Full Text PDFThis paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators.
View Article and Find Full Text PDFCantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
In this work we simultaneously aim at addressing the design and fabrication of microelectromechanical systems (MEMS) for biological applications bearing actuation and readout capabilities together with adapted tools dedicated to surface functionalization at the microscale. The biosensing platform is based on arrays of silicon micromembranes with piezoelectric actuation and piezoresistive read-out capabilities. The detection of the cytochrome C protein using molecularly imprinted polymers (MIPs) as functional layer is demonstrated.
View Article and Find Full Text PDFAngiogenesis, the formation of new blood vessels by sprouting from pre-existing ones, is critical for the establishment and maintenance of complex tissues. Angiogenesis is usually triggered by soluble growth factors such as VEGF. However, geometrical cues also play an important role in this process.
View Article and Find Full Text PDFMolecularly imprinted polymers (MIPs) are tailor-made receptors that possess the most important feature of biological antibodies and receptors - specific molecular recognition. They can thus be used in applications where selective binding events are of importance, such as chemical sensors, biosensors and biochips. For the development of microsensors, sensor arrays and microchips based on molecularly imprinted polymers, micro and nanofabrication methods are of great importance since they allow the patterning and structuring of MIPs on transducer surfaces.
View Article and Find Full Text PDFWe use soft lithography to pattern molecularly imprinted polymers (MIPs) at the nanoscale. Patterning occurs via a micro transfer molding process associated with an edge effect. We show using fluorescence microscopy that the nanopatterned synthetic receptors specifically recognize and bind a model target, dansyl-l-phenylalanine.
View Article and Find Full Text PDFWe use photolithography to pattern molecularly imprinted polymers for the wafer-scale production of biochips. We are able to produce multiplexed, spatially resolved micrometer-sized features of functional materials capable of molecular recognition. Using a fluorescent probe, dansyl-L-Phe, we show specific analyte binding to MIP patterns imprinted with boc-L-Phe, by fluorescence microscopy.
View Article and Find Full Text PDFDi- and triblock non-ionic copolymers based on poly(ethylene oxide) and poly(propylene oxide) were studied for the stabilization of nanoparticles in water at high ionic strength. The effect of the molecular architecture (di- vs. triblock) of these amphiphilic copolymers was investigated by using gold nanoparticles (AuNPs) as probes for colloidal stability.
View Article and Find Full Text PDFWe have used fountain pen microlithography to deposit arrays of molecularly imprinted polymer microdots on flat substrates. We visualize analyte binding to the dots by fluorescence microscopy with the aid of fluorescein as a model analyte. Elution and readsorption of the analyte to the MIP dots were possible if the porosity of the dots was improved by a sacrificial polymeric porogen.
View Article and Find Full Text PDF