Introduction: Visceral arterial aneurysms (VAAs) are life threatening. Due to the paucity of symptoms and rarity of the disease, VAAs are underdiagnosed and underestimated. Artificial intelligence (AI) offers new insights into segmentation of the vascular system, and opportunities to better detect VAAs.
View Article and Find Full Text PDFObjective: Applications of artificial intelligence (AI) have been reported in several cardiovascular diseases but its interest in patients with peripheral artery disease (PAD) has been so far less reported. The aim of this review was to summarize current knowledge on applications of AI in patients with PAD, to discuss current limits, and highlight perspectives in the field.
Methods: We performed a narrative review based on studies reporting applications of AI in patients with PAD.
Background: There is currently a lack of consensus and tools to easily measure vascular calcification using computed tomography angiography (CTA). The aim of this study was to develop a fully automatic software to measure calcifications and to evaluate the interest as predictive factor in patients with aorto-iliac occlusive disease.
Methods: This study retrospectively included 171 patients who had endovascular repair of an aorto-iliac occlusive lesion at the University Hospital of Nice between January 2011 and December 2019.
Research output related to artificial intelligence (AI) in vascular diseases has been poorly investigated. The aim of this study was to evaluate scientific publications on AI in non-cardiac vascular diseases. A systematic literature search was conducted using the PubMed database and a combination of keywords and focused on three main vascular diseases (carotid, aortic and peripheral artery diseases).
View Article and Find Full Text PDFIntroduction: The treatment of abdominal aortic aneurysm relies on surgical repair and the indication mainly depends on its size evaluated by the maximal diameter (Dmax). The aim of this study was to evaluate a new automatic method based on artificial intelligence to measure the Dmax on computed tomography angiography.
Methods: A fully automatic segmentation of the vascular system was performed using a hybrid method combining expert system with supervised deep learning.
Background: Computed tomography angiography (CTA) is one of the most commonly used imaging technique for the management of vascular diseases. Here, we aimed to develop a hybrid method combining a feature-based expert system with a supervised deep learning (DL) algorithm to enable a fully automatic segmentation of the abdominal vascular tree.
Methods: We proposed an algorithm based on the hybridization of a data-driven convolutional neural network and a knowledge-based model dedicated to vascular system segmentation.
Objectives: Advances in virtual, augmented and mixed reality have led to the development of wearable technologies including head mounted displays (HMD) and smart glasses. While there is a growing interest on their potential applications in health, only a few studies have addressed so far their use in vascular surgery. The aim of this review was to summarize the fundamental notions associated with these technologies and to discuss potential applications and current limits for their use in vascular surgery.
View Article and Find Full Text PDFObjective: Abdominal aortic aneurysm (AAA) is a life-threatening disease, and the only curative treatment relies on open or endovascular repair. The decision to treat relies on the evaluation of the risk of AAA growth and rupture, which can be difficult to assess in practice. Artificial intelligence (AI) has revealed new insights into the management of cardiovascular diseases, but its application in AAA has so far been poorly described.
View Article and Find Full Text PDFArtificial intelligence (AI) corresponds to a broad discipline that aims to design systems, which display properties of human intelligence. While it has led to many advances and applications in daily life, its introduction in medicine is still in its infancy. AI has created interesting perspectives for medical research and clinical practice but has been sometimes associated with hype leading to a misunderstanding of its real capabilities.
View Article and Find Full Text PDFImaging software have become critical tools in the diagnosis and the treatment of abdominal aortic aneurysms (AAA). The aim of this study was to develop a fully automated software system to enable a fast and robust detection of the vascular system and the AAA. The software was designed from a dataset of injected CT-scans images obtained from 40 patients with AAA.
View Article and Find Full Text PDF