Publications by authors named "Cedar H"

A number of studies have demonstrated that it is possible to directly convert one cell type to another by factor-mediated transdifferentiation, but in the vast majority of cases, the resulting reprogrammed cells are unable to maintain their new cell identity for prolonged culture times and have a phenotype only partially similar to their endogenous counterparts. To better understand this phenomenon, we developed an analytical approach for better characterizing trans-differentiation-associated changes in DNA methylation, a major determinant of long-term cell identity. By examining various models of transdifferentiation both in vitro and in vivo, our studies indicate that despite convincing expression changes, transdifferentiated cells seem unable to alter their original developmentally mandated methylation patterns.

View Article and Find Full Text PDF
Article Synopsis
  • After partial hepatectomy, the liver can rapidly regenerate, involving significant changes in DNA methylation patterns.
  • These changes mimic the methylation state of embryonic liver cells, indicating that adult liver cells undergo epigenetic dedifferentiation during regeneration.
  • The study suggests that understanding these methylation processes could inform strategies in regenerative medicine by highlighting the importance of early embryonic gene behavior in liver regeneration.
View Article and Find Full Text PDF

Human trophoblast stem cells (hTSCs) can be derived from embryonic stem cells (hESCs) or be induced from somatic cells by OCT4, SOX2, KLF4 and MYC (OSKM). Here we explore whether the hTSC state can be induced independently of pluripotency, and what are the mechanisms underlying its acquisition. We identify GATA3, OCT4, KLF4 and MYC (GOKM) as a combination of factors that can generate functional hiTSCs from fibroblasts.

View Article and Find Full Text PDF

Injury to muscle brings about the activation of stem cells, which then generate new myocytes to replace damaged tissue. We demonstrate that this activation is accompanied by a dramatic change in the stem-cell methylation pattern that prepares them epigenetically for terminal myocyte differentiation. These de- and de novo methylation events occur at regulatory elements associated with genes involved in myogenesis and are necessary for activation and regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • DNA methylation is known to repress gene expression, but its exact role in development is still not fully understood.
  • The initial DNA methylation pattern in early embryos may act as a complex system to keep gene regulatory elements in a closed chromatin structure across the body.
  • As development progresses, targeted demethylation in specific cell types allows certain regulatory elements to remain open, enabling them to interact with transcription factors and shape gene expression for cell identity.
View Article and Find Full Text PDF
Article Synopsis
  • Developmental programming involves a series of molecular decisions that mark the genome and create stable cell types in an organism.
  • Key biological processes rely on the stable selection of one allele in each cell, including genomic imprinting, immune receptor selection, and X-chromosome inactivation in females.
  • The authors suggest that asynchronous replication timing (ASRT) could be a critical mechanism for regulating and maintaining these genetic choices.
View Article and Find Full Text PDF

Stochastic asynchronous replication timing (AS-RT) is a phenomenon in which the time of replication of each allele is different, and the identity of the early allele varies between cells. By taking advantage of stable clonal pre-B cell populations derived from C57BL6/Castaneous mice, we have mapped the genome-wide AS-RT loci, independently of genetic differences. These regions are characterized by differential chromatin accessibility, mono-allelic expression and include new gene families involved in specifying cell identity.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional methods for determining gestational age, like the last menstrual period and ultrasounds, have significant limitations, prompting a search for new approaches.
  • The study focused on identifying molecular markers by analyzing cord blood and placenta samples to create an epigenetic clock based on DNA methylation patterns.
  • Findings revealed that specific DNA methylation changes could accurately predict gestational age, showing high agreement with established methods, indicating the potential for DNA methylation as a reliable clinical tool for age determination.
View Article and Find Full Text PDF

Following erasure in the blastocyst, the entire genome undergoes de novo methylation at the time of implantation, with CpG islands being protected from this process. This bimodal pattern is then preserved throughout development and the lifetime of the organism. Using mouse embryonic stem cells as a model system, we demonstrate that the binding of an RNA polymerase complex on DNA before de novo methylation is predictive of it being protected from this modification, and tethering experiments demonstrate that the presence of this complex is, in fact, sufficient to prevent methylation at these sites.

View Article and Find Full Text PDF

DNA methylation represents an annotation system for marking the genetic text, thus providing instruction as to how and when to read the information and control transcription. Unlike sequence information, which is inherited, methylation patterns are established in a programmed process that continues throughout development, thus setting up stable gene expression profiles. This DNA methylation paradigm is a key player in medicine.

View Article and Find Full Text PDF

Development in mammals is accompanied by specific de novo and demethylation events that are thought to stabilize differentiated cell phenotypes. We demonstrate that a large percentage of the tissue-specific methylation pattern is generated postnatally. Demethylation in the liver is observed in thousands of enhancer-like sequences associated with genes that undergo activation during the first few weeks of life.

View Article and Find Full Text PDF
Article Synopsis
  • DNA methylation at gene promoters is crucial for regulating gene expression, with the insulin promoter being particularly unmethylated in insulin-producing pancreatic β-cells.
  • Recent findings show that both insulin and glucagon gene promoters are demethylated in pancreatic islet cells, regardless of whether they express insulin, glucagon, or somatostatin.
  • This study indicates that the lack of methylation at these promoters supports the flexible identity of islet cell types and could have important implications for diabetes treatment and understanding β-cell health through circulating DNA methylation patterns.
View Article and Find Full Text PDF

Many regions of the genome replicate asynchronously and are expressed monoallelically. It is thought that asynchronous replication may be involved in choosing one allele over the other, but little is known about how these patterns are established during development. We show that, unlike somatic cells, which replicate in a clonal manner, embryonic and adult stem cells are programmed to undergo switching, such that daughter cells with an early-replicating paternal allele are derived from mother cells that have a late-replicating paternal allele.

View Article and Find Full Text PDF

Fragile X syndrome is the most frequent cause of inherited intellectual disability. The primary molecular defect in this disease is the expansion of a CGG repeat in the 5' region of the fragile X mental retardation1 (FMR1) gene, leading to de novo methylation of the promoter and inactivation of this otherwise normal gene, but little is known about how these epigenetic changes occur during development. In order to gain insight into the nature of this process, we have used cell fusion technology to recapitulate the events that occur during early embryogenesis.

View Article and Find Full Text PDF

DNA methylation plays a prominent role in setting up and stabilizing the molecular design of gene regulation and by understanding this process one gains profound insight into the underlying biology of mammals. In this article, we trace the discoveries that provided the foundations of this field, starting with the mapping of methyl groups in the genome and the experiments that helped clarify how methylation patterns are maintained through cell division. We then address the basic relationship between methyl groups and gene repression, as well as the molecular rules involved in controlling this process during development in vivo.

View Article and Find Full Text PDF

Although much has been done to understand how rearrangement of the Igκ locus is regulated during B-cell development, little is known about the way the variable (V) segments themselves are selected. Here we show, using B6/Cast hybrid pre-B-cell clones, that a limited number of V segments on each allele is stochastically activated as characterized by the appearance of non-coding RNA and histone modifications. The activation states are clonally distinct, stable across cell division and developmentally important in directing the Ig repertoire upon differentiation.

View Article and Find Full Text PDF

Recently, it was suggested that tissue variation in cancer risk originates from differences in the number of stem-cell divisions underlying each tissue, leading to different mutation loads. We show that this variation is also correlated with the degree of aberrant CpG island DNA methylation in normal cells. Methylation accumulates during aging in a subset of molecules, suggesting that the epigenetic landscape within a founder-cell population may contribute to tumor formation.

View Article and Find Full Text PDF

DNA methylation is known to be abnormal in all forms of cancer, but it is not really understood how this occurs and what is its role in tumorigenesis. In this review, we take a wide view of this problem by analyzing the strategies involved in setting up normal DNA methylation patterns and understanding how this stable epigenetic mark works to prevent gene activation during development. Aberrant DNA methylation in cancer can be generated either prior to or following cell transformation through mutations.

View Article and Find Full Text PDF

The genome is subject to a diverse array of epigenetic modifications from DNA methylation to histone posttranslational changes. Many of these marks are somatically stable through cell division. This article focuses on our knowledge of the mechanisms governing the inheritance of epigenetic marks, particularly, repressive ones, when the DNA and chromatin template are duplicated in S phase.

View Article and Find Full Text PDF

There is ample evidence that somatic cell differentiation during development is accompanied by extensive DNA demethylation of specific sites that vary between cell types. Although the mechanism of this process has not yet been elucidated, it is likely to involve the conversion of 5mC to 5hmC by Tet enzymes. We show that a Tet2/Tet3 conditional knockout at early stages of B-cell development largely prevents lineage-specific programmed demethylation events.

View Article and Find Full Text PDF

Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome.

View Article and Find Full Text PDF

DNA methylation patterns are set up in a relatively fixed programmed manner during normal embryonic development and are then stably maintained. Using genome-wide analysis, we discovered a postnatal pathway involving gender-specific demethylation that occurs exclusively in the male liver. This demodification is programmed to take place at tissue-specific enhancer sequences, and our data show that the methylation state at these loci is associated with and appears to play a role in the transcriptional regulation of nearby genes.

View Article and Find Full Text PDF

Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2(-/-) (Mdr2/Abcb4-knockout) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation followed by hybridization with "CpG islands" (CGIs) microarrays, we found specific CGIs in 76 genes which were hypermethylated in the Mdr2(-/-) liver compared to age-matched healthy controls.

View Article and Find Full Text PDF

The Igκ locus undergoes a variety of different molecular processes during B cell development, including V(D)J rearrangement and somatic hypermutations (SHM), which are influenced by cis regulatory regions (RRs) within the locus. The Igκ locus includes three characterized RRs termed the intronic (iEκ), 3'Eκ, and Ed enhancers. We had previously noted that a region of DNA upstream of the iEκ and matrix attachment region (MAR) was necessary for demethylation of the locus in cell culture.

View Article and Find Full Text PDF

Both mouse and human embryonic stem cells can be differentiated in vitro to produce a variety of somatic cell types. Using a new developmental tracing approach, we show that these cells are subject to massive aberrant CpG island de novo methylation that is exacerbated by differentiation in vitro. Bioinformatics analysis indicates that there are two distinct forms of abnormal de novo methylation, global as opposed to targeted, and in each case the resulting pattern is determined by molecular rules correlated with local pre-existing histone modification profiles.

View Article and Find Full Text PDF