Purpose: To explore sleep position in asymmetric primary open-angle glaucoma (POAG) with a focus on low pressure glaucoma (LPG).
Methods: Sleep laboratory videos of 54 POAG patients were examined for lateral sleep. Then, 29 LPG patients (intraocular pressure [IOP] < 22 mm Hg) with an intereye visual field index (VFI) asymmetry of more than 5% continuously recorded their sleep position at home for 2 nights by using a portable device.
Fuchs dystrophy represents the most common form of endothelial dystrophy and is a significant cause of visual impairment. The cause of Fuchs dystrophy is a complicated combination of both genetic and environmental factors. Understanding the underlying causes of the disease can potentially lead to new medical treatments preventing loss of vision.
View Article and Find Full Text PDFProtease activated receptor-1 (PAR1) is expressed in multiple cell types in the CNS, with the most prominent expression in glial cells. PAR1 activation enhances excitatory synaptic transmission secondary to the release of glutamate from astrocytes following activation of astrocytically-expressed PAR1. In addition, PAR1 activation exacerbates neuronal damage in multiple in vivo models of brain injury in a manner that is dependent on NMDA receptors.
View Article and Find Full Text PDFProtease-activated receptor 1 (PAR1) is a G-protein coupled receptor that is expressed throughout the central nervous system. PAR1 activation by brain-derived as well as blood-derived proteases has been shown to have variable and complex effects in a variety of animal models of neuronal injury and inflammation. In this study, we have evaluated the effects of PAR1 on lesion volume in wild-type or PAR1-/- C57Bl/6 mice subjected to transient occlusion of the middle cerebral artery or injected with NMDA in the striatum.
View Article and Find Full Text PDFProtease-activated receptor-1 (PAR1) is activated by a number of serine proteases, including plasmin. Both PAR1 and plasminogen, the precursor of plasmin, are expressed in the central nervous system. In this study we examined the effects of plasmin in astrocyte and neuronal cultures as well as in hippocampal slices.
View Article and Find Full Text PDFProtease-activated receptor 1 (PAR1) is a G-protein-coupled receptor activated by serine proteases and expressed in astrocytes, microglia, and specific neuronal populations. We examined the effects of genetic deletion and pharmacologic blockade of PAR1 in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease, a neurodegenerative disease characterized by nigrostriatal dopamine damage and gliosis. After MPTP injection, PAR1-/- mice showed significantly higher residual levels of dopamine, dopamine transporter, and tyrosine hydroxylase and diminished microgliosis compared with wild-type mice.
View Article and Find Full Text PDFThe roles of serine proteases and protease activated receptors have been extensively studied in coagulation, wound healing, inflammation, and neurodegeneration. More recently, serine proteases have been suggested to influence synaptic plasticity. In this context, we examined the role of protease activated receptor 1 (PAR1), which is activated following proteolytic cleavage by thrombin and plasmin, in emotionally motivated learning.
View Article and Find Full Text PDFWe have studied the involvement of the thrombin receptor [protease-activated receptor-1 (PAR-1)] in astrogliosis, because extravasation of PAR-1 activators, such as thrombin, into brain parenchyma can occur after blood-brain barrier breakdown in a number of CNS disorders. PAR1-/- animals show a reduced astrocytic response to cortical stab wound, suggesting that PAR-1 activation plays a key role in astrogliosis associated with glial scar formation after brain injury. This interpretation is supported by the finding that the selective activation of PAR-1 in vivo induces astrogliosis.
View Article and Find Full Text PDF