The voltage-sensitive sodium channel Na1.1 plays a critical role in regulating excitability of GABAergic neurons and mutations in the corresponding gene are associated to Dravet syndrome and other forms of epilepsy. The activity of this channel is regulated by several protein kinases.
View Article and Find Full Text PDFThe glycine transporter GLYT1 participates in inhibitory and excitatory neurotransmission by controlling the reuptake of this neuroactive substance from synapses. Over the past few years, microRNAs have emerged as potent negative regulators of gene expression. In this report, we investigate the possible regulation of GLYT1 by microRNAs.
View Article and Find Full Text PDFWe used proximity-dependent biotin identification (BioID) to find proteins that potentially interact with the major glial glutamate transporter, GLT-1, and we studied how these interactions might affect its activity. GTPase Rac1 was one protein identified, and interfering with its GTP/GDP cycle in mixed primary rat brain cultures affected both the clustering of GLT-1 at the astrocytic processes and the transport kinetics, increasing its uptake activity at low micromolar glutamate concentrations in a manner that was dependent on the effector kinase PAK1 and the actin cytoskeleton. Interestingly, the same manipulations had a different effect on another glial glutamate transporter, GLAST, inhibiting its activity.
View Article and Find Full Text PDFThe α7 nicotinic receptor subunit and its partially duplicated human-specific dupα7 isoform are coexpressed in neuronal and non-neuronal cells. In these cells, α7 subunits form homopentameric α7 nicotinic acetylcholine receptors (α7-nAChRs) implicated in numerous pathologies. In immune cells, α7-nAChRs are essential for vagal control of inflammatory response in sepsis.
View Article and Find Full Text PDFGLT-1 is the main glutamate transporter in the brain and its trafficking controls its availability at the cell surface, thereby shaping glutamatergic neurotransmission under physiological and pathological conditions. Extracellular glutamate is known to trigger ubiquitin-dependent GLT-1 internalization from the surface of the cell to the intracellular compartment, yet here we show that internalization also requires the participation of calcium ions. Consistent with previous studies, the addition of glutamate (1 mM) to mixed primary cultures (containing neurons and astrocytes) promotes GLT-1 internalization, an effect that was suppressed in the absence of extracellular Ca.
View Article and Find Full Text PDFGlycine plays two roles in neurotransmission. In caudal areas like the spinal cord and the brainstem, it acts as an inhibitory neurotransmitter, but in all regions of the CNS, it also works as a co-agonist with L-glutamate at N-methyl-D-aspartate receptors (NMDARs). The glycine fluxes in the CNS are regulated by two specific transporters for glycine, GlyT1 and GlyT2, perhaps with the cooperation of diverse neutral amino acid transporters like Asc-1 or SNAT5/SN2.
View Article and Find Full Text PDFNeuronal Signal
February 2017
Glycinergic neurons are major contributors to the regulation of neuronal excitability, mainly in caudal areas of the nervous system. These neurons control fluxes of sensory information between the periphery and the CNS and diverse motor activities like locomotion, respiration or vocalization. The phenotype of a glycinergic neuron is determined by the expression of at least two proteins: GlyT2, a plasma membrane transporter of glycine, and VIAAT, a vesicular transporter shared by glycine and GABA.
View Article and Find Full Text PDFGLT-1 is the main glutamate transporter in the brain and undergoes trafficking processes that control its concentration on the cell surface thereby shaping glutamatergic neurotransmission. We have investigated how the traffic of GLT-1 is regulated by transporter activity. We report that internalization of GLT-1 from the cell surface is accelerated by transportable substrates like glutamate or aspartate, as well as by the transportable inhibitor L-trans-2,4-PDC, but not by the non-substrate inhibitor WAY 213613 in primary mixed cultures and in transiently transfected HEK293 cells.
View Article and Find Full Text PDFThe glutamate transporters GLAST and GLT-1 are mainly expressed in glial cells and regulate glutamate levels in the synapses. GLAST and GLT-1 are the targets of several signaling pathways. In this study we explore the possible functional interaction between these transporters and GSK3β.
View Article and Find Full Text PDFSolute neutral amino acid transporter 5 (SNAT5/SN2) is a member of the System N family, expressed in glial cells in the adult brain, able to transport glutamine, histidine or glycine among other substrates. Its tight association with synapses and its electroneutral mode of operation that allows the bidirectional movement of substrates, supports the idea that this transporter participates in the function of the glutamine-glutamate cycle between neurons and glia. Moreover, SNAT5/SN2 might contribute to the regulation of glycine concentration in glutamatergic synapses and, therefore, to the functioning of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors.
View Article and Find Full Text PDFWe have previously shown the presence of the glycine transporter GLYT1 in glutamatergic terminals of the rat brain. In this study we present immunohistochemical and biochemical evidence indicating that GLYT1 is expressed not only at the plasma membrane of glutamatergic neurons, but also at synaptic vesicles. Confocal microscopy, immunoblots analysis of a highly purified synaptic vesicle fraction and immunoisolation of synaptic vesicles with anti-synaptophysin antibodies strongly suggested the presence of GLYT1 in synaptic vesicles.
View Article and Find Full Text PDFHyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder.
View Article and Find Full Text PDFThe main glutamate transporter in the brain, GLT-1, mediates glutamatergic neurotransmission in both physiological and pathological conditions. GLT-1 activity is controlled by both constitutive and regulated trafficking, and although recent evidence indicates that the turnover of this protein in the plasma membrane is accelerated by protein kinase C via an ubiquitin-dependent process, the mechanisms driving the constitutive trafficking of GLT-1 remain unexplored. Here, we used a heterologous system and primary astrocytes to investigate the turnover of GLT-1 and the role of ubiquitin attachment in this process.
View Article and Find Full Text PDFGlutamate transporter-1 (GLT-1) is the main glutamate transporter in the central nervous system, and its concentration severely decreases in neurodegenerative diseases. The number of transporters in the plasma membrane reflects the balance between their insertion and removal, and it has been reported that the regulated endocytosis of GLT-1 depends on its ubiquitination triggered by protein kinase C (PKC) activation. Here, we identified serine 520 of GLT-1 as the primary target for PKC-dependent phosphorylation, although elimination of this serine did not impair either GLT-1 ubiquitination or endocytosis in response to phorbol esters.
View Article and Find Full Text PDFThe sodium-coupled neutral amino acid transporter 2 (SNAT2) is a protein that is expressed ubiquitously in mammalian tissues and that displays Na(+), voltage and pH dependent activity. This transporter mediates the passage of small zwitterionic amino acids across the cell membrane and regulates the cell homeostasis and its volume. We have examined the expression of SNAT2 mRNA and protein during the development of the rat cerebral cortex, from gestation through the postnatal stages to adulthood.
View Article and Find Full Text PDFThe glycine transporter GLYT1 regulates both glycinergic and glutamatergic neurotransmission by controlling the reuptake of glycine at synapses. Trafficking of GLYT1 to and from the cell surface is critical for its function. Activation of PKC down-regulates the activity of GLYT1 through a mechanism that has so far remained uncharacterized.
View Article and Find Full Text PDFThe glutamate transporter GLT1 is expressed in at least two isoforms, GLT1a and GLT1b, which differ in their C termini. As GLT1 is an oligomeric protein, we have investigated whether GLT1a and GLT1b might associate as hetero-oligomers. Differential tagging (HA-GLT1a and YFP-GLT1b) revealed that these isoforms form complexes that could be immunoprecipitated when co-expressed in heterologous systems.
View Article and Find Full Text PDFGlycine is an inhibitory neurotransmitter that is mainly active in the caudal areas of the CNS. However, glycine also participates in excitatory neurotransmission since it is a co-agonist of the NMDA subtype of glutamate receptors. The concentration of glycine at synapses is mainly controlled by two sodium and chloride dependent transporters, GLYT1 and GLYT2, proteins that display a complementary distribution and activity in the nervous system.
View Article and Find Full Text PDFThe activity of the main glutamate transporter in the CNS, GLT1, can be regulated by protein kinase C (PKC). It is known that activation of PKC by phorbol esters promotes the clathrin-dependent internalization of the transporter, followed by its lysosomal degradation. However, the molecular mechanisms that link PKC activation and the internalization of GLT1 are not fully understood.
View Article and Find Full Text PDFThe glutamate transporter (GLT1) regulates glutamate concentrations in glutamatergic synapses and it is expressed in at least two isoforms, GLT1a and GLT1b. In this work, we show that the C-terminus of GLT1b is able to interact with the PDZ domains of a number of proteins. Notably, one of them might be the scaffold protein post-synaptic density (PSD-95).
View Article and Find Full Text PDFThe GLYT1 (glycine transporter-1) regulates both glycinergic and glutamatergic neurotransmission by controlling the reuptake of glycine at synapses. Trafficking to the cell surface of GLYT1 is critical for its function. In the present paper, by using mutational analysis of the GLYT1 C-terminal domain, we identified the evolutionarily conserved motif R(575)L(576)(X(8))D(585) as being necessary for ER (endoplasmic reticulum) export.
View Article and Find Full Text PDFRecent evidence indicates that the glycine transporter-1 (GLYT1) plays a role in regulation of NMDA receptor function through tight control of glycine concentration in its surrounding medium. Immunohistochemical studies have demonstrated that, as well as being found in glial cells, GLYT1 is also associated with the pre- and postsynaptic aspects of glutamatergic synapses. In this article, we describe the interaction between GLYT1 and PSD-95 in the rat brain, PSD-95 being a scaffolding protein that participates in the organization of glutamatergic synapses.
View Article and Find Full Text PDFNeuropharmacology
November 2005
Evidence is accumulating that the glycine transporter GLYT1 regulates NMDA receptor function by modulating the glycine concentration in glutamatergic synapses. In this article, we describe a physical and functional interaction between GLYT1 and the exocyst complex. Through a yeast two-hybrid screen to search for proteins capable of interacting with the intracellular C-terminal tail of GLYT1, we identified a protein that is highly homologous to the human and mouse Sec3 protein, a component of the exocyst complex.
View Article and Find Full Text PDF