Site-selective disulfide rebridging has emerged as a powerful strategy to modulate the structural and functional properties of proteins. Here, we introduce a novel class of electrophilic reagents, designated oxSTEF, that demonstrate excellent efficiency in disulfide rebridging via double thiol exchange. The oxSTEF reagents are prepared using an efficient synthetic sequence which may be diverted to obtain a range of derivatives allowing for tuning of reactivity or steric bulk.
View Article and Find Full Text PDFThe identification of growth inhibitory compounds with the ability to selectively target the cellular oxygenation state may be of therapeutic interest. Here, a phenotypic screen of a covalent fragment library revealed diverse compounds containing propiolamide warheads with selective toxicity for liver cancer cells in normoxic conditions. Target identification and validation through CETSA and direct pulldown experiments demonstrated that several compounds target glutathione peroxidase 4 (GPX4) and induce ferroptotic cell death.
View Article and Find Full Text PDFIn wet tundra ecosystems, covering vast areas of the Arctic, the belowground plant biomass exceeds the aboveground, making root dynamics a crucial component of the nutrient cycling and the carbon (C) budget of the Arctic. In response to the projected climatic scenarios for the Arctic, namely increased temperature and changes in precipitation patterns, root dynamics may be altered leading to significant changes in the net ecosystem C budget. Here, we quantify the single and combined effects of 1 year of increased winter snow deposition by snow fences and summer warming by open-top chambers (OTCs) on root dynamics in a wetland at Disko Island (West Greenland).
View Article and Find Full Text PDFArctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH ) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH . Here, we present results of in situ CH flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH budget and responses to summer warming.
View Article and Find Full Text PDFMany Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland.
View Article and Find Full Text PDFEmissions of biogenic volatile organic compounds (BVOCs) from dry ecosystems at high latitudes respond strongly to small increases in temperature, and warm canopy surface temperatures drive emissions to higher levels than expected. However, it is not known whether emissions from wetlands, cooled by through-flowing water and higher evapotranspiration show similar response to warming as in drier ecosystems. Climate change will cause parts of the Arctic to experience increased snow fall, which delays the start of the growing season, insulates soil from low temperatures in winter, and increases soil moisture and possibly nutrient availability.
View Article and Find Full Text PDF