Publications by authors named "Cecilie Rustad"

Background: Serine residues in the protein backbone of heavily glycosylated proteoglycans are bound to glycosaminoglycans through a tetrasaccharide linker. UXS1 encodes UDP-glucuronate decarboxylase 1, which catalyzes synthesis of UDP-xylose, the donor of the first building block in the linker. Defects in other enzymes involved in formation of the tetrasaccharide linker cause so-called linkeropathies, characterized by short stature, radio-ulnar synostosis, decreased bone density, congenital contractures, dislocations, and more.

View Article and Find Full Text PDF

Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed clinical and genetic data from 36 individuals with CDH+ to identify genes that may influence diaphragm development and reveal new related health conditions.
  • * They found potential harmful variants in genes (CREBBP, SMARCA4, UBA2, USP9X) that are expressed in developing mouse diaphragms, suggesting these genes contribute to diaphragm development and furthering our understanding of CDH.
View Article and Find Full Text PDF

Background: Arthrogryposis multiplex congenita (AMC) is a descriptive term that encompasses a group of congenital, aetiologically heterogeneous conditions characterised by multiple joint contractions.

Case Presentation: As a teenager, the index patient was told she had AMC, as did one of her parents. Subsequently, she wondered how her condition might evolve over time, since her affected parent had become wheelchair- dependent.

View Article and Find Full Text PDF

Here we describe for the first time double paternal uniparental isodisomy (iUPD) 7 and 15 in a baby boy with features in the Beckwith-Wiedemann syndrome spectrum (BWSp) (placentomegaly, hyperinsulinism, enlarged viscera, hemangiomas, and earlobe creases) in addition to conjugated hyperbilirubinemia. His phenotype was also reminiscent of genome-wide paternal uniparental isodisomy. We discuss the most likely origin of the UPDs: a maternal double monosomy 7 and 15 rescued by duplication of the paternal chromosomes after fertilization.

View Article and Find Full Text PDF

The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome.

View Article and Find Full Text PDF

Background: Symptomatic spinal stenosis (SSS) is a well-known medical complication in achondroplasia. The reported prevalence of SSS is 10 to 30%, an estimate based on small studies or selected populations. No population-based studies exist currently.

View Article and Find Full Text PDF

Myeloid neoplasms (MNs) with germline predisposition have recently been recognized as novel entities in the latest World Health Organization (WHO) classification for MNs. Individuals with MNs due to germline predisposition exhibit increased risk for the development of MNs, mainly acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Setting the diagnosis of MN with germline predisposition is of crucial clinical significance since it may tailor therapy, dictate the selection of donor for allogeneic hematopoietic stem cell transplantation (allo-HSCT), determine the conditioning regimen, enable relevant prophylactic measures and early intervention or contribute to avoid unnecessary or even harmful medication.

View Article and Find Full Text PDF

Brachyolmia is a skeletal dysplasia characterized by short spine-short stature, platyspondyly, and minor long bone abnormalities. We describe 18 patients, from different ethnic backgrounds and ages ranging from infancy to 19 years, with the autosomal recessive form, associated with PAPSS2. The main clinical features include disproportionate short stature with short spine associated with variable symptoms of pain, stiffness, and spinal deformity.

View Article and Find Full Text PDF

The developmental and epileptic encephalopathies (DEE) are a heterogeneous group of chronic encephalopathies frequently associated with rare de novo nonsynonymous coding variants in neuronally expressed genes. Here, we describe eight probands with a DEE phenotype comprising intellectual disability, epilepsy, and hypotonia. Exome trio analysis showed de novo variants in TRPM3, encoding a brain-expressed transient receptor potential channel, in each.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the use of machine-learning algorithms to identify genetic disorders by analyzing facial photographs, revealing potential applications beyond known phenotypes.
  • Researchers identified two individuals with a novel genetic disorder linked to a specific mutation in the LEMD2 gene, displaying similar progeria-like facial features and unique physical and neurological anomalies.
  • The findings suggest that artificial intelligence can aid in discovering new genetic disorders by clustering similar syndromes, indicating a common genetic cause, while also noting that the prognosis for this condition is better than classic Hutchinson-Gilford progeria.
View Article and Find Full Text PDF

SLC35A2-CDG is caused by mutations in the X-linked SLC35A2 gene encoding the UDP-galactose transporter. SLC35A2 mutations lead to hypogalactosylation of N-glycans. SLC35A2-CDG is characterized by severe neurological symptoms and, in many patients, early-onset epileptic encephalopathy.

View Article and Find Full Text PDF

Purpose: Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective.

Methods: We retrospectively studied patients referred for clinical exome sequencing (CES, N = 10,698).

View Article and Find Full Text PDF

Introduction: Recent evidence has emerged linking mutations in to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with mutations.

Methods: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause.

View Article and Find Full Text PDF

Background: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions.

View Article and Find Full Text PDF

Axial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome.

View Article and Find Full Text PDF

Objectives: We aimed to determine the proportion of individuals in our schwannomatosis cohort whose disease is associated with an LZTR1 mutation.

Methods: We used exome sequencing, Sanger sequencing, and copy number analysis to screen 65 unrelated individuals with schwannomatosis who were negative for a germline NF2 or SMARCB1 mutation. We also screened samples from 39 patients with a unilateral vestibular schwannoma (UVS), plus at least one other schwannoma, but who did not have an identifiable germline or mosaic NF2 mutation.

View Article and Find Full Text PDF

Gorlin syndrome is a rare genetic condition in which patients may develop medulloblastomas, jaw cysts and basal cell carcinomas and show congenital skeletal malformations. If left undiagnosed, Gorlin syndrome can have a number of negative consequences. Early diagnosis and good follow-up is important for all patients with rare disorders.

View Article and Find Full Text PDF

Human phosphoglucomutase 3 (PGM3) catalyzes the conversion of N-acetyl-glucosamine (GlcNAc)-6-phosphate into GlcNAc-1-phosphate during the synthesis of uridine diphosphate (UDP)-GlcNAc, a sugar nucleotide critical to multiple glycosylation pathways. We identified three unrelated children with recurrent infections, congenital leukopenia including neutropenia, B and T cell lymphopenia, and progression to bone marrow failure. Whole-exome sequencing demonstrated deleterious mutations in PGM3 in all three subjects, delineating their disease to be due to an unsuspected congenital disorder of glycosylation (CDG).

View Article and Find Full Text PDF