Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful.
View Article and Find Full Text PDFBackground: Nucleic acid-based analytical methods have greatly expanded our understanding of global prokaryotic diversity, yet standard metabarcoding methods provide no information on the most fundamental physiological state of bacteria, viability. Scleractinian corals harbour a complex microbiome in which bacterial symbionts play critical roles in maintaining health and functioning of the holobiont. However, the coral holobiont contains both dead and living bacteria.
View Article and Find Full Text PDFCorals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral .
View Article and Find Full Text PDF