Publications by authors named "Cecilia Y Cheng"

Protein kinase A (PKA) holoenzyme, comprised of a cAMP-binding regulatory (R)-subunit dimer and 2 catalytic (C)-subunits, is the master switch for cAMP-mediated signaling. Of the 4 R-subunits (RIα, RIβ, RIIα, RIIβ), RIα is most essential for regulating PKA activity in cells. Our 2 RIαC holoenzyme states, which show different conformations with and without ATP, reveal how ATP/Mg functions as a negative orthosteric modulator.

View Article and Find Full Text PDF

Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates many proteins, most notably cAMP-dependent protein kinase (PKA). PKA holoenzymes (comprised of two catalytic (C) and two regulatory (R) subunits) regulate a wide variety of cellular processes, and its functional diversity is amplified by the presence of four R-subunit isoforms, RIα, RIβ, RIIα, and RIIβ. Although these isoforms all respond to cAMP, they are functionally nonredundant and exhibit different biochemical properties.

View Article and Find Full Text PDF

The catalytic (C) and regulatory (R) subunits of protein kinase A are exceptionally dynamic proteins. Interactions between the R- and C-subunits are regulated by cAMP binding to the two cyclic nucleotide-binding domains in the R-subunit. Mammalian cells express four different isoforms of the R-subunit (RIalpha, RIbeta, RIIalpha, and RIIbeta) that all interact with the C-subunit in different ways.

View Article and Find Full Text PDF

The catalytic subunit of cAMP-dependent protein kinase has served as a prototype for the protein kinase superfamily for many years while structures of the cAMP-bound regulatory subunits have defined the conserved cyclic nucleotide binding (CNB) motif. It is only structures of the holoenzymes, however, that enable us to appreciate the molecular features of inhibition by the regulatory subunits as well as activation by cAMP. These structures reveal for the first time the remarkable malleability of the regulatory subunits and the CNB domains.

View Article and Find Full Text PDF

Protein kinase A (PKA) holoenzyme is one of the major receptors for cyclic adenosine monophosphate (cAMP), where an extracellular stimulus is translated into a signaling response. We report here the structure of a complex between the PKA catalytic subunit and a mutant RI regulatory subunit, RIalpha(91-379:R333K), containing both cAMP-binding domains. Upon binding to the catalytic subunit, RI undergoes a dramatic conformational change in which the two cAMP-binding domains uncouple and wrap around the large lobe of the catalytic subunit.

View Article and Find Full Text PDF

The tetratricopeptide repeat (TPR) is a 34-residue helix-turn-helix motif that occurs as three or more tandem repeats in a wide variety of proteins. We have determined the repeat motions and backbone fluctuations of proteins containing two or three consensus TPR repeats (CTPR2 and CPTR3, respectively) using 15N NMR relaxation measurements. Rotational diffusion tensors calculated from these data for each repeat within each TPR protein indicate that there is a high degree of motional correlation between different repeats in the same protein.

View Article and Find Full Text PDF