The antimicrobial photodynamic activity (aPDA) in fungal and bacterial strains of supramolecular adducts formed between the anionic photosensitizer (PS) Rose Bengal (RB) and aromatic polycations derived from (-vinylbenzyl)triethylammonium chloride was evaluated. Stable supramolecular adducts with dissociation constants ≈ 5 μM showed photosensitizing properties suitable for generating singlet oxygen (Φ = 0.5 ± 0.
View Article and Find Full Text PDFFront Bioeng Biotechnol
July 2021
Microbial infections represent a silent threat to health that has worsened in recent decades due to microbial resistance to multiple drugs, preventing the fight against infectious diseases. Therefore, the current postantibiotic era forces the search for new microbial control strategies. In this regard, antimicrobial photodynamic therapy (aPDT) using supramolecular arrays with photosensitizing capabilities showed successful emerging applications.
View Article and Find Full Text PDFSensors (Basel)
July 2019
The growth of the urban population together with a high concentration of air pollution have important health impacts on citizens who are exposed to them, causing serious risks of the development and evolution of different chronic diseases. This paper presents the design and development of a novel participatory citizen science-based application and data ecosystem model. These developments are imperative and scientifically designed to gather and process perceptual sensing of urban, environmental, and health data.
View Article and Find Full Text PDFNeurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of β-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process.
View Article and Find Full Text PDFNeurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short.
View Article and Find Full Text PDFThe close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology.
View Article and Find Full Text PDF