Publications by authors named "Cecilia Vasti"

Layered double hydroxides nanoparticles (LDH-NP) are increasingly studied for biomedical applications. Nevertheless, their interaction with biomolecules such as proteins needs further exploration for an effective application. In this work, the adsorption of bovine serum albumin (BSA) on LDH-NP and the conformation changes of the protein upon adsorption were characterized using fluorescence spectroscopy.

View Article and Find Full Text PDF

Layered double hydroxide nanoparticles (LDH-NPs) constitute promising nanocarriers for drug and gene delivery. Although their cell internalization has been studied, the interaction between LDH-NPs and biological membrane models, such as giant unilamellar vesicles (GUVs), remains unexplored. These vesicles are widely-used membrane models that allow minimizing the complexity and uncertainty associated with biological systems to study the physical interactions in the absence of cell metabolism effects.

View Article and Find Full Text PDF

Considering that the use of nanoparticles (NPs) as carriers of therapeutic or theranostic agents has increased in the last years, it is mandatory to understand the interaction between NPs and living systems. In contact with biological fluids, the NPs (synthetic identity) are covered with biomolecules that form a protein corona, which defines the biological identity. It is well known that the protein corona formation is mediated by non-specific physical interactions, but protein-protein interactions (PPI), involving specific recognition sites of the polypeptides, are also involved.

View Article and Find Full Text PDF

The physicochemical properties of drug nanocarriers such as layered double hydroxide nanoparticles (LDH-NPs) determine their circulation times in biological media and their interaction with the targeted cells. Nevertheless, the components of the biological fluid, and particularly the formation of a protein corona, change the properties of as-prepared nanocarriers. Here, we discuss the effect of the protein corona formation on the colloidal stability and reactivity of LDH-NPs intercalated with chloride (LDH-Cl), carbonate (LDH-CO) or dodecylsulfate (LDH-DS).

View Article and Find Full Text PDF

Neuregulin-1 (NRG1) signaling through the tyrosine kinase receptors erbB2 and erbB4 is required for cardiac morphogenesis, and it plays an essential role in maintaining the myocardial architecture during adulthood. The tyrosine kinase receptor erbB2 was first linked to the amplification and overexpression of erbb2 gene in a subtype of breast tumor cells, which is indicative of highly proliferative cells and likely a poor prognosis following conventional chemotherapy. The development of targeted therapies to block the survival of erbB2-positive cancer cells revealed that impaired NRG1 signaling through erbB2/erbB4 heterodimers combined with anthracycline chemotherapy may lead to dilated cardiomyopathy in a subpopulation of treated patients.

View Article and Find Full Text PDF

The accumulating evidence demonstrates the essential role of neuregulin-1 signaling in the adult heart, and, moreover, indicates that an impaired neuregulin signaling exacerbates the doxorubicin-mediated cardiac toxicity. Despite this strong data, the specific cardiomyocyte targets of the active erbB2/erbB4 heterodimer remain unknown. In this paper, we examined pathways involved in cardiomyocyte damage as a result of the cardiac sensitization to anthracycline toxicity in the ventricular muscle-specific erbB4 knockout mouse.

View Article and Find Full Text PDF