The ependyma of the adult spinal cord is a latent stem cell niche that is reactivated by spinal cord injury contributing new cells to the glial scar. The cellular events taking place in the early stages of the reaction of the ependyma to injury remain little understood. Ependymal cells are functionally heterogeneous with a mitotically active subpopulation lining the lateral domains of the central canal (CC) that are coupled via gap junctions.
View Article and Find Full Text PDFThe ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.
View Article and Find Full Text PDFFront Cell Neurosci
January 2014
Intrinsic electrophysiological properties arising from specific combinations of voltage-gated channels are fundamental for the performance of small neural networks in invertebrates, but their role in large-scale vertebrate circuits remains controversial. Although spinal neurons have complex intrinsic properties, some tasks produce high-conductance states that override intrinsic conductances, minimizing their contribution to network function. Because the detection and coding of somato-sensory information at early stages probably involves a relatively small number of neurons, we speculated that intrinsic electrophysiological properties are likely involved in the processing of sensory inputs by dorsal horn neurons (DHN).
View Article and Find Full Text PDFThe region that surrounds the central canal (CC) in the turtle spinal cord is a neurogenic niche immersed within already functional circuits, where radial glia expressing brain lipid binding protein (BLBP) behave as progenitors. The behaviour of both progenitors and neuroblasts within adult neurogenic niches must be regulated to maintain the functional stability of the host circuit. In the brain, GABA plays a major role in this kind of regulation but little is known about GABAergic signalling in neurogenic niches of the postnatal spinal cord.
View Article and Find Full Text PDFThe dorsal horn of the spinal cord is the first central relay where nociceptive inputs are processed. Based on the expression and modulation of intrinsic electrophysiological properties in in vitro slice preparations, dorsal horn neurones (DHNs) display different discharge patterns (tonic, plateau or rhythmic), which shape the neurone's response to sensory inputs. However, it is unclear whether intrinsic properties play any role in sensory processing in vivo.
View Article and Find Full Text PDFThe cells lining the central canal (CC) of the spinal cord derive from the ventral part of the neural tube and, in some vertebrates, are responsible for the functional recovery after spinal cord injury. The region that surrounds the CC in the turtle contains proliferating cells that seem to generate both glia and neurons. Understanding the biology of spinal progenitors with the potential to generate new neurons "in situ" is important for cell replacement therapies.
View Article and Find Full Text PDFThis paper deals with the cytological organization of the central gelatinosa (CG) in the spinal cord of juvenile (2-12 months) turtles. We found two main cell classes in the CG: one with characteristics of immature neurons, the other identified as radial glia (RG). The cells surrounding the central canal formed radial conglomerates in such a way that the RG lamellae covered the immature neurons.
View Article and Find Full Text PDFSeveral studies performed using the slice in vitro technique have shown that spinal cord neurons display specialized intrinsic electrophysiological properties. However, the actual role of intrinsic properties in somatosensory processing remains unclear, mainly due to the impossibility to generate natural sensory inputs in spinal cord slices. Here, we show an integrated spinal cord-hindlimbs preparation of juvenile turtles that has the advantages of in vitro approaches and still enables natural stimulation.
View Article and Find Full Text PDFIn lower vertebrates, some cells contacting the central canal (CC) retain the ability to proliferate, leading the reconstruction of the spinal cord after injury. A better understanding about the nature of these cells could contribute to the development of novel strategies for spinal cord repair. Here, by combining light and electron microscopy, immunocytochemistry and patch-clamp recordings, we provide evidence supporting the presence of precursor-like cells and immature neurones contacting the CC of juvenile turtles.
View Article and Find Full Text PDF