Publications by authors named "Cecilia R C Calado"

Serum metabolome analysis is essential for identifying disease biomarkers and predicting patient outcomes in precision medicine. Thus, this study aims to compare Ultra-High Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) with Fourier Transform Infrared (FTIR) spectroscopy in acquiring the serum metabolome of critically ill patients, associated with invasive mechanical ventilation (IMV), and predicting death. Three groups of 8 patients were considered.

View Article and Find Full Text PDF

Identifying high-risk patients, particularly in intensive care units (ICUs), enhances treatment and reduces severe outcomes. Since the pandemic, numerous studies have examined COVID-19 patient profiles and factors linked to increased mortality. Despite six pandemic waves, to the best of our knowledge, there is no extensive comparative analysis of patients' characteristics across these waves in Portugal.

View Article and Find Full Text PDF

Delirium presents a significant clinical challenge, primarily due to its profound impact on patient outcomes and the limitations of the current diagnostic methods, which are largely subjective. During the COVID-19 pandemic, this challenge was intensified as the frequency of delirium assessments decreased in Intensive Care Units (ICUs), even as the prevalence of delirium among critically ill patients increased. The present study evaluated how the serum molecular fingerprint, as acquired by Fourier-Transform InfraRed (FTIR) spectroscopy, can enable the development of predictive models for delirium.

View Article and Find Full Text PDF

Robust data normalization and analysis are pivotal in biomedical research to ensure that observed differences in populations are directly attributable to the target variable, rather than disparities between control and study groups. ArsHive addresses this challenge using advanced algorithms to normalize populations (e.g.

View Article and Find Full Text PDF

To robustly discover and explore phytocompounds, it is necessary to evaluate the interrelationships between the plant species, plant tissue, and the extraction process on the extract composition and to predict its cytotoxicity. The present work evaluated how Fourier Transform InfraRed spectroscopy can acquire the molecular profile of aqueous and ethanol-based extracts obtained from leaves, seeds, and flowers of Cynara Cardunculus, and ethanol-based extracts from Matricaria chamomilla flowers, as well the impact of these extracts on the viability of mammalian cells. The extract molecular profile enabled to predict the extraction yield, and how the plant species, plant tissue, and extraction process affected the extract's relative composition.

View Article and Find Full Text PDF

Introduction: The unparalleled progress in science of the last decades has brought a better understanding of the molecular mechanisms of diseases. This promoted drug discovery processes based on a target approach. However, despite the high promises associated, a critical decrease in the number of first-in-class drugs has been observed.

View Article and Find Full Text PDF

Kidney transplantation is an essential medical procedure that significantly enhances the survival rates and quality of life for patients with end-stage kidney disease. However, despite advancements in immunosuppressive therapies, allograft rejection remains a leading cause of organ loss. Notably, predictions of cellular rejection processes primarily rely on biopsy analysis, which is not routinely performed due to its invasive nature.

View Article and Find Full Text PDF

: Given the wide spectrum of clinical and laboratory manifestations of the coronavirus disease 2019 (COVID-19), it is imperative to identify potential contributing factors to patients' outcomes. However, a limited number of studies have assessed how the different waves affected the progression of the disease, more so in Portugal. Therefore, our main purpose was to study the clinical and laboratory patterns of COVID-19 in an unvaccinated population admitted to the intensive care unit, identifying characteristics associated with death, in each of the first three waves of the pandemic.

View Article and Find Full Text PDF

Kidney transplantation significantly enhances the survival rate and quality of life of patients with end-stage kidney disease. The ability to predict post-transplantation rejection events in their early phases can reduce subsequent allograft loss. Therefore, it is critical to identify biomarkers of rejection processes that can be acquired on routine analysis of samples collected by non-invasive or minimally invasive procedures.

View Article and Find Full Text PDF

Genotoxicity is an important information that should be included in human biomonitoring programmes. However, the usually applied cytogenetic assays are laborious and time-consuming, reason why it is critical to develop rapid and economic new methods. The aim of this study was to evaluate if the molecular profile of frozen whole blood, acquired by Fourier Transform Infrared (FTIR) spectroscopy, allows to assess genotoxicity in occupational exposure to antineoplastic drugs, as obtained by the cytokinesis-block micronucleus assay.

View Article and Find Full Text PDF

Biofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Healthcare-associated methicillin-resistant infections (MRSA) have high rates of illness and death globally, prompting research on potential treatments.
  • This study examined the synergistic effects of Epigalocatenin-3-gallate (EGCG) combined with various antibiotics on different resistant bacterial strains isolated from patients in a Lisbon hospital.
  • Results indicated that EGCG exposure significantly impacted the expression of genes related to drug resistance and epigenetics, suggesting its potential as a novel antimicrobial agent or supportive treatment against antibiotic-resistant infections.
View Article and Find Full Text PDF

Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures.

View Article and Find Full Text PDF

Unlabelled: The treatment effectiveness of gastric diseases caused by the bacteria Helicobacter pylori is failing due to high resistance to some antibiotics. Consequently, it is urgent to develop an accurate methodology to screen new antimicrobial agents.

Methods And Results: A preliminary assay, using both therapeutic-based antibiotics (clarithromycin and metronidazole), was conducted to optimize experimental conditions in terms of the sensibility of the Fourier-transform mid-infrared (MIR-FTIR) spectroscopy associated with chemometric methods.

View Article and Find Full Text PDF

Since the revolutionary finding of Helicobacter pylori as a common bacterial infection, that a high research effort for its eradication has been conducted. Epitope based-vaccine presents advantages over protein-based, as they can be designed to contain epitopes from diverse proteins, therefore, more easily representing the immune-variability of the bacterial population, while minimizing the toxicity associated to some whole proteins. In the present work, an iterative method, to design antigenic and conserved B-epitopes from diverse virulent factors of H.

View Article and Find Full Text PDF

Current infection biomarkers are highly limited since they have low capability to predict infection in the presence of confounding processes such as in non-infectious inflammatory processes, low capability to predict disease outcomes and have limited applications to guide and evaluate therapeutic regimes. Therefore, it is critical to discover and develop new and effective clinical infection biomarkers, especially applicable in patients at risk of developing severe illness and critically ill patients. Ideal biomarkers would effectively help physicians with better patient management, leading to a decrease of severe outcomes, personalize therapies, minimize antibiotics overuse and hospitalization time, and significantly improve patient survival.

View Article and Find Full Text PDF

Structural modifications of known antibiotic scaffolds have kept the upper hand on resistance, but we are on the verge of not having antibiotics for many common infections. Mechanism-based discovery assays reveal novelty, exclude off-target liabilities, and guide lead optimization. For that, we developed a fast and automatable protocol using high-throughput Fourier-transform infrared spectroscopy (FTIRS).

View Article and Find Full Text PDF

There are two main strategies for antibiotic discovery: target-based and phenotypic screening. The latter has been much more successful in delivering first-in-class antibiotics, despite the major bottleneck of delayed Mechanism-of-Action (MOA) identification. Although finding new antimicrobial compounds is a very challenging task, identifying their MOA has proven equally challenging.

View Article and Find Full Text PDF

It is critical to develop new methods to assess genotoxic effects in human biomonitoring since the conventional methods are usually laborious, time-consuming, and expensive. It is aimed to evaluate if the analysis of a drop of serum by Fourier Transform Infrared spectroscopy, allow to assess genotoxic effects in occupational exposure to cytostatic drugs in hospital professionals, as obtained by the lymphocyte cytokinesis-block micronucleus assay. It was considered peripheral blood from hospital professionals exposed to cytostatic drugs (n = 22) and from a non-exposed group (n = 36).

View Article and Find Full Text PDF

The low rate of discovery and rapid spread of resistant pathogens have made antibiotic discovery a worldwide priority. In cell-based screening, the mechanism of action (MOA) is identified after antimicrobial activity. This increases rediscovery, impairs low potency candidate detection, and does not guide lead optimization.

View Article and Find Full Text PDF

colonizes the human stomach of half of the world's population. The infection if not treated, persists through life, leading to chronic gastric inflammation, that may progress to severe diseases as peptic ulcer, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The first line of treatment, based on 7 to 21 days of two antibiotics associated with a proton pump inhibitor, is, however, already failing most due to patient non-compliance that leads to antibiotic resistance.

View Article and Find Full Text PDF

The discovery of antibiotics has been slowing to a halt. Phenotypic screening is once again at the forefront of antibiotic discovery, yet Mechanism-Of-Action (MOA) identification is still a major bottleneck. As such, methods capable of MOA elucidation coupled with the high-throughput screening of whole cells are required now more than ever, for which Fourier-Transform Infrared (FTIR) spectroscopy is a promising metabolic fingerprinting technique.

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG), the major catechin present in green tea, presents diverse appealing biological activities, such as antioxidative, anti-inflammatory, antimicrobial, and antiviral activities, among others. The present work evaluated the impact in the molecular profile of human plasma from daily consumption of 225 mg of EGCG for 90 days. Plasma from peripheral blood was collected from 30 healthy human volunteers and analyzed by high-throughput Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Given the increase in antibiotic-resistant bacteria, alongside the alarmingly low rate of newly approved antibiotics for clinical usage, we are on the verge of not having effective treatments for many common infectious diseases. Historically, antibiotic discovery has been crucial in outpacing resistance and success is closely related to systematic procedures-platforms-that have catalyzed the antibiotic golden age, namely the Waksman platform, followed by the platforms of semi-synthesis and fully synthetic antibiotics. Said platforms resulted in the major antibiotic classes: aminoglycosides, amphenicols, ansamycins, beta-lactams, lipopeptides, diaminopyrimidines, fosfomycins, imidazoles, macrolides, oxazolidinones, streptogramins, polymyxins, sulphonamides, glycopeptides, quinolones and tetracyclines.

View Article and Find Full Text PDF

The infection of Helicobacter pylori, covering 50% of the world-population, leads to diverse gastric diseases as ulcers and cancer along the life-time of the human host. To promote the discovery of biomarkers of bacterial infection, in the present work, Fourier-transform infrared spectra were acquired from adenocarcinoma gastric cells, incubated with H. pylori strains presenting different genotypes concerning the virulent factors cytotoxin associated gene A and vacuolating cytotoxin A.

View Article and Find Full Text PDF