Publications by authors named "Cecilia Martinez-Perez"

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems.

View Article and Find Full Text PDF

Understanding how floral traits affect reproduction is key for understanding genetic diversity, speciation, and trait evolution in the face of global changes and pollinator decline. However, there has not yet been a unified framework to characterize the major trade-offs and axes of floral trait variation. Here, we propose the development of a floral economics spectrum (FES) that incorporates the multiple pathways by which floral traits can be shaped by multiple agents of selection acting on multiple flower functions.

View Article and Find Full Text PDF

Variation in xylem conduit diameter traditionally has been explained by climate, whereas other evidence suggests that tree height is the main driver of conduit diameter. The effect of climate versus stem length on vessel diameter was tested in two tree species (Embothrium coccineum, Nothofagus antarctica) that both span an exceptionally wide precipitation gradient (2300-500 mm). To see whether, when taking stem length into account, plants in wetter areas had wider vessels, not only the scaling of vessel diameter at the stem base across individuals of different heights, but also the tip-to-base scaling along individuals of similar heights across sites were examined.

View Article and Find Full Text PDF

Ecologists have been largely interested in the description and understanding of the power scaling relationships between body size and abundance of organisms. Many studies have focused on estimating the exponents of these functions across taxonomic groups and spatial scales, to draw inferences about the processes underlying this pattern. The exponents of these functions usually approximate -3/4 at geographical scales, but they deviate from this value when smaller spatial extensions are considered.

View Article and Find Full Text PDF