CMOS-based nanocapacitor arrays allow local probing of the impedance of an electrolyte in real time and with sub-micron spatial resolution. Here we report on the physico-chemical characterization of individual microdroplets of oil in a continuous water phase using this new tool. We monitor the sedimentation and wetting dynamics of individual droplets, estimate their volume and infer their composition based on their dielectric constant.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2018
We describe the realization of a fully electronic label-free temperature-controlled biosensing platform aimed to overcome the Debye screening limit over a wide range of electrolyte salt concentrations. It is based on an improved version of a 90-nm CMOS-integrated circuit featuring a nanocapacitor array, readout and A/D conversion circuitry, and a field programmable gate array (FPGA)-based interface board with NIOS II soft processor. We describe chip's processing, mounting, microfluidics, temperature control system, as well as the calibration and compensation procedures to reduce systematic errors, which altogether make up a complete quantitative sensor platform.
View Article and Find Full Text PDFWe have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65 536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time.
View Article and Find Full Text PDF