Background: Endolysins are peptidoglycan hydrolases with promising use as environment-friendly antibacterials mainly when used topically. However, in general, endolysin expression is hampered by its low solubility. Thus, a critical point in endolysin industrial production is optimizing their expression, including improvement of solubility and recovery from cell extracts.
View Article and Find Full Text PDFCold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion.
View Article and Find Full Text PDFCell penetrating peptides, also known as protein transduction domains, have the capacity to ubiquitously cross cellular membranes carrying many different cargos with negligible cytotoxicity. As a result, they have emerged as a powerful tool for macromolecular delivery-based therapies. In this study, catalytically active bacterial Ferredoxin-NADP+ reductase (LepFNR) and Heme oxygenase (LepHO) fused to the HIV TAT-derived protein transduction peptide (TAT) were efficiently transduced to neuroblastoma SHSY-5Y cells.
View Article and Find Full Text PDFLiver transplantation is currently the preferred treatment option for end-stage liver disease. Donation after cardiac death was a common practice in the early years of organ donation before brain death criteria were established. Those organs were subjected to variable periods of warm ischemia that might intensify cold ischemia/reperfusion injuries.
View Article and Find Full Text PDFThe aim of this work was to compare the efficiency of cold storage (CS) and hypothermic machine perfusion (HMP) methods of preserving grafts excised from non-heart-beating donors that had suffered 45 minutes of warm ischemia. We developed a new solution for HMP to use in liver transplantation, based on BES, gluconate, and polyethylene glycol (BGP-HMP solution). After 24 h of HMP or CS, livers were reperfused at 37°C with Krebs-Henseleit solution with added dextran.
View Article and Find Full Text PDFThe insults sustained by transplanted livers (hepatectomy, hypothermic preservation, and normothermic reperfusion) could compromise hepatic function. Hydrogen sulfide (H₂S) is a physiologic gaseous signaling molecule, like nitric oxide (NO) and carbon monoxide (CO). We examined the effect of diallyl disulfide as a H₂S donor during hypothermic preservation and reperfusion on intrahepatic resistance (IVR), lactate dehydrogenase (LDH) release, bile production, oxygen consumption, bromosulfophthalein (BSP) depuration and histology in an isolated perfused rat liver model (IPRL), after 48 h of hypothermic storage (4 °C) in University of Wisconsin solution (UW, Viaspan).
View Article and Find Full Text PDFSUMMARY: Organ transplantation has developed over the past 50 years to reach the sophisticated and integrated clinical service of today through several advances in science. One of the most important of these has been the ability to apply organ preservation protocols to deliver donor organs of high quality, via a network of organ exchange to match the most suitable recipient patient to the best available organ, capable of rapid resumption of life-sustaining function in the recipient patient. This has only been possible by amassing a good understanding of the potential effects of hypoxic injury on donated organs, and how to prevent these by applying organ preservation.
View Article and Find Full Text PDF