Publications by authors named "Cecilia J"

Diffusion cells are used to measure diffusion coefficients (D) in gels. These measurements are of interest to understand and predict the availability of nutritive or toxic chemical species in waters, soils and sediments. When the diffusive flux from the donor to the acceptor compartment is constant (steady-state regime), D is determined from the slope of the linear plot of the acceptor concentration vs time.

View Article and Find Full Text PDF

Addressing climate change requires transitioning to cleaner energy sources and adopting advanced CO capture techniques. Clay minerals are effective in CO adsorption due to their regenerative properties. Recent advancements in nanotechnology further improve their efficiency and potential for use in carbon capture and storage.

View Article and Find Full Text PDF

In this work, the effect of microwave-assisted acid treatments on the morphological and crystallochemical characteristics of chrysotile fibers is investigated. A low concentration of nitric acid (0.2 N) is used to remove Mg-species located in the octahedral sheet of its structure, thereby causing a crystallo-chemical change forming a skeleton of non-crystalline amorphous silica.

View Article and Find Full Text PDF

The aim of this special issue is to show the advances in the different applications that inorganic materials based on silica have had in recent years [...

View Article and Find Full Text PDF

Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved.

View Article and Find Full Text PDF

The valorization of biomass and its transformation into fuels are highly interesting due to the abundance of biomass and its almost neutral carbon emissions. In this article, we show the production of γ-valerolactone (GVL), a valuable product, from furfural (FF), a compound that can be easily obtained from biomass. This FF to GVL transformation involves a catalytic cascade reaction with two hydrogenation steps.

View Article and Find Full Text PDF

Five phyllosilicates (kaolinite, montmorillonite, saponite, sepiolite and palygorskite) have been selected as starting materials for the synthesis of zeolites. Among them, kaolinite and montmorillonite display the lowest Si/Al molar ratio leading to aluminosilicates with high crystallinity. Thus, the hydrothermal treatment under basic conditions forms 4A zeolite when kaolinite is used as starting material while 13X zeolite is obtained when montmorillonite is used as starting material.

View Article and Find Full Text PDF

The separation of CO from N remains a highly challenging task in postcombustion CO capture processes, primarily due to the relatively low CO content (3-15%) compared to that of N (70%). This challenge is particularly prominent for carbon-based adsorbents that exhibit relatively low selectivity. In this study, we present a successfully implemented strategy to enhance the selectivity of composite aerogels made of reduced graphene oxide (rGO) and functionalized polymer particles.

View Article and Find Full Text PDF

Nb-based catalysts supported on porous silica with different textural properties have been synthesized, characterized, and tested in the one-pot reaction of furfural to obtain valuable chemicals. The catalytic results reveal that the presence of fluoride in the synthesis, which limits the growing of the porous silica, limits diffusional problems of the porous silica, obtaining higher conversion values at shorter reaction times. On the other hand, the incorporation of NbO species in the porous silica provides Lewis acid sites and a small proportion of Brönsted acid sites, in such a way that the main products are alkyl furfuryl ethers, which can be used as fuel additives.

View Article and Find Full Text PDF

This research pioneers the application of microwave irradiation as an innovative strategy for one-pot synthesis and surfactant elimination (cetyltrimethylammonium bromide-CTAB) from MCM-41, introducing a rapid and efficient methodology. MCM-41 silica is widely utilized in various applications due to its unique textural and structural properties. Nonetheless, the presence of residual surfactants after synthesis poses a challenge to its effective application.

View Article and Find Full Text PDF

Wipe wastes have been used as a cellulosic source to synthesize biochars. Prior to the synthesis of the adsorbents by the pyrolysis of wipes wastes, this waste was treated to remove the pathogenic agents. Then, the wipe wastes were pyrolyzed between 500 and 900 °C to obtain biochars, whose microporosity increased proportionally to the pyrolysis temperature, achieving a maximum CO-adsorption uptake of 2.

View Article and Find Full Text PDF

The global demand for energy and industrial growth has generated an exponential use of fossil fuels in recent years. It is well known that carbon dioxide (CO) is mainly produced, but not only from fuels, which has a negative impact on the environment, such as the increasing emission of greenhouse gases. Thus, thinking about reducing this problem, this study analyzes microwave irradiation as an alternative to conventional heating to optimize zeolite A synthesis conditions for CO capture.

View Article and Find Full Text PDF

Determining species, concentrations, and physicochemical parameters in natural waters is key to improve our understanding of the functioning of these ecosystems. Diffusive Gradients in Thin-films (DGT) devices with different thicknesses of the resin or of the diffusive disc can be used to collect independent information on relevant parameters. In particular, DGT devices with a stack of two resin discs offer a simple way to determine dissociation rate constants of metal complexes from the accumulation of the target metal in the back resin disc.

View Article and Find Full Text PDF

Since the beginning of civilization, porous materials have been used for medical purposes [...

View Article and Find Full Text PDF

The main constraint on developing a full potential for CO adsorption of 3D composite monoliths made of reduced graphene oxide (rGO) and polymer materials is the lack of control of their textural properties, along with the diffusional limitation to the CO adsorption due to the pronounced polymers' microporosity. In this work, the textural properties of the composites were altered by employing highly crosslinked polymer particles, synthesized by emulsion polymerization in aqueous media. For that aim, waterborne methyl methacrylate (MMA) particles were prepared, in which the crosslinking was induced by using different quantities of divinyl benzene (DVB).

View Article and Find Full Text PDF

Three chitosans with different morphologies have been used (commercial chitosan powder, chitosan in film form and chitosan in globular form synthesized by the freeze-dried method) for the synthesis of biochars. The pyrolytic treatment has revealed that the biochar synthesized from the chitosan formed by the freeze-dried method reaches the highest CO-adsorption capacity (4.11 mmol/g at 0 °C and a pressure of 1 bar) due to this adsorbent is highly microporous.

View Article and Find Full Text PDF

Environmental and water quality monitoring are of utmost interest in a context where land use changes, uncontrolled agricultural practices, human settlements, tourism and other activities affect a watershed and condition the usage of their surface waters. Such is the case of Mar Menor lagoon in Southeast of Spain, where the EU H2020 SMARTLAGOON project stands and is implementing an intelligent environmental infrastructure and modelling that will let the construction of a digital twin of the lagoon. Performing environmental monitoring is expensive and the number of sampling locations is typically limited by the budget.

View Article and Find Full Text PDF
Article Synopsis
  • A bio-composite material was developed using sodium purified clay to carry Caraway essential oil (CEO), which shows strong antibacterial and antifungal properties.
  • The key active components in CEO were identified as Carvone and Limonene, demonstrating effective inhibition against Staphylococcus aureus and Candida albicans at specific concentrations.
  • Experimental results confirmed optimal conditions for creating the bio-hybrid, with Carvone showing a much higher adsorption capacity on the clay compared to Limonene, indicating its potential for pharmaceutical applications.
View Article and Find Full Text PDF

Porous SiO nanospheres were modified with different loadings of ZrO to obtain catalysts with a Si/Zr molar ratio from 2.5 to 30. These materials were characterized by X-ray diffraction, transmission and scanning electron microscopies, N adsorption-desorption at -196 °C, X-ray photoelectron spectroscopy and pyridine and 2-6-dimethylpyridine thermoprogrammed desorption.

View Article and Find Full Text PDF

Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N adsorption/desorption isotherms at -196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420-337 m g and an average pore diameter with a maximum between 20-25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin-HSA and immunoglobulin G-IgG).

View Article and Find Full Text PDF

We are witnessing the dramatic consequences of the COVID-19 pandemic which, unfortunately, go beyond the impact on the health system. Until herd immunity is achieved with vaccines, the only available mechanisms for controlling the pandemic are quarantines, perimeter closures and social distancing with the aim of reducing mobility. Governments only apply these measures for a reduced period, since they involve the closure of economic activities such as tourism, cultural activities, or nightlife.

View Article and Find Full Text PDF

The effect of polyvinyl alcohol (PVA) stabilizers and gold nanoparticles supported on active carbon (AuNPs/AC) was investigated in this article. Polymers with different molecular weights and hydrolysis degrees have been synthesized and used, like the stabilizing agent of Au nano-catalysts obtained by the sol-immobilization method. The reduction of 4-nitrophenol with NaBH has been used as a model reaction to investigate the catalytic activity of synthesized Au/AC catalysts.

View Article and Find Full Text PDF

The analytical technique DGT (Diffusive Gradients in Thin-films) is able to gain access to a wealth of information by carefully interpreting accumulation data from passive samplers with different configurations (i.e. different thicknesses of its constituent layers).

View Article and Find Full Text PDF

After the industrial revolution, the increase in the world population and the consumption of fossil fuels has led to an increase in anthropogenic CO emissions [...

View Article and Find Full Text PDF