Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking.
View Article and Find Full Text PDFAging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks.
View Article and Find Full Text PDFAtaxia-telangiectasia (A-T) is caused by absence of the catalytic activity of ATM, a protein kinase that plays a central role in the DNA damage response, many branches of cellular metabolism, redox and mitochondrial homeostasis, and cell cycle regulation. A-T is a complex disorder characterized mainly by progressive cerebellar degeneration, immunodeficiency, radiation sensitivity, genome instability, and predisposition to cancer. It is increasingly recognized that the premature aging component of A-T is an important driver of this disease, and A-T is therefore an attractive model to study the aging process.
View Article and Find Full Text PDFAtaxia-telangiectasia (A-T) is a genetic disorder caused by the lack of functional ATM kinase. A-T is characterized by chronic inflammation, neurodegeneration and premature ageing features that are associated with increased genome instability, nuclear shape alterations, micronuclei accumulation, neuronal defects and premature entry into cellular senescence. The causal relationship between the detrimental inflammatory signature and the neurological deficiencies of A-T remains elusive.
View Article and Find Full Text PDFThe high consumption of saturated lipids has been largely associated with the increasing prevalence of metabolic diseases. In particular, saturated fatty acids such as palmitic acid (PA) have been implicated in the development of insulin resistance in peripheral tissues. However, how neurons develop insulin resistance in response to lipid overload is not fully understood.
View Article and Find Full Text PDF