Publications by authors named "Cecilia De Fazio"

We study the dynamics of a classical circuit corresponding to a discrete-time version of the kinetically constrained East model. We show that this classical "Floquet-East" model displays pre-transition behavior which is a dynamical equivalent of the hydrophobic effect in water. For the deterministic version of the model, we prove exactly (i) a change in scaling with size in the probability of inactive space-time regions (akin to the "energy-entropy" crossover of the solvation free energy in water), (ii) a first-order phase transition in the dynamical large deviations, (iii) the existence of the optimal geometry for local phase separation to accommodate space-time solutes, and (iv) a dynamical analog of "hydrophobic collapse.

View Article and Find Full Text PDF

We study the nonequilibrium dynamics of the Floquet quantum East model (a Trotterized version of the kinetically constrained quantum East spin chain) at its "deterministic point," where evolution is defined in terms of CNOT permutation gates. We solve exactly the thermalization dynamics for a broad class of initial product states by means of "space evolution." We prove: (i) the entanglement of a block of spins grows at most at one-half the maximal speed allowed by locality (i.

View Article and Find Full Text PDF

We investigate the quantum entanglement content of quasiparticle excitations in extended many-body systems. We show that such excitations give an additive contribution to the bipartite von Neumann and Rényi entanglement entropies that takes a simple, universal form. It is largely independent of the momenta and masses of the excitations and of the geometry, dimension, and connectedness of the entanglement region.

View Article and Find Full Text PDF