Publications by authors named "Cecilia Crisanti"

With 5-year survival rates below 5%, small cell lung carcinoma (SCLC) has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC.

View Article and Find Full Text PDF

Prognosis of small cell lung carcinoma (SCLC) is particularly poor, less than 5% of patients with extensive stage being alive after two years. We hypothesized that SCLC chemotherapy could be improved by using histone deacetylase (HDAC) inhibitors based on their ability to interfere with lysine acetylation and to alter gene expression. The goal of this study was to evaluate the anticancer efficacy of a HDAC inhibitor (valproate: VPA) on SCLC cells in combination with the standard chemotherapeutic first-line regimen (cisplatin+etoposide).

View Article and Find Full Text PDF

Altering the immunosuppressive microenvironment that exists within a tumor will likely be necessary for cancer vaccines to trigger an effective antitumor response. Monocyte chemoattractant proteins (such as CCL2) are produced by many tumors and have both direct and indirect immunoinhibitory effects. We hypothesized that CCL2 blockade would reduce immunosuppression and augment vaccine immunotherapy.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer deaths in the United States. Current therapies are inadequate. Histone deacetylase inhibitors (HDACi) are a recently developed class of anticancer agents that cause increased acetylation of core histones and nonhistone proteins leading to modulation of gene expression and protein activity involved in cancer cell growth and survival pathways.

View Article and Find Full Text PDF

Intrapulmonary engraftment of engineered lung tissues could provide a potential therapeutic approach for the treatment of pediatric and adult pulmonary diseases. In working toward this goal, we report here on in vivo generation of vascularized pulmonary tissue constructs utilizing the subcutaneous Matrigel plug model. Mixed populations of murine fetal pulmonary cells (FPCs) containing epithelial, mesenchymal, and endothelial cells (ECs) were isolated from the lungs of embryonic day 17.

View Article and Find Full Text PDF

Background: Pulmonary hypoplasia (PH) is found in 15% to 20% of all neonatal autopsies, accounting for 2850 deaths yearly. Development of engineered tissue substitutes that could functionally restore damaged tissue remains a unique opportunity for biotechnology. Recently, we isolated and characterized murine fetal pulmonary cells (FPC) and engineered 3-D pulmonary tissue constructs in vitro.

View Article and Find Full Text PDF