Publications by authors named "Cecilia Creus"

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

The development of novel biotechnologies that promote a better use of N to optimize crop yield is a central goal for sustainable agriculture. Phytostimulation, biofertilization, and bioprotection through the use of bio-inputs are promising technologies for this purpose. In this study, the plant growth-promoting rhizobacteria Pseudomonas koreensis MME3 was genetically modified to express a nitric oxide synthase of Synechococcus SyNOS, an atypical enzyme with a globin domain that converts nitric oxide to nitrate.

View Article and Find Full Text PDF

Water deficit constitutes a severe limitation to agricultural productivity. In the context of sustainable crop production, the potential of microbial biotechnology to increase plant drought tolerance and improve crop yields under adverse conditions is gaining relevance. This work aimed to compare the performance of Azospirillumargentinense strain Az19 to that of strain Az39, the most widely used for commercial inoculants, when inoculated in maize plants exposed to water deficit.

View Article and Find Full Text PDF

Azospirillum baldaniorum Sp 245 is a model plant growth-promoting rhizobacterium. The first cross-talk with plants takes place within the roots. Roots cells growth is constrained by the primary cell wall (CW).

View Article and Find Full Text PDF

Immobilization of microorganisms in biodegradable polymeric matrices constitutes a promising technology for plant growth promoting to overcome the challenging conditions of the rhizosphere. Previously, we demonstrated that beads prepared from blends of chitosan/starch of analytical grades ionically cross-linked are useful carriers for Azospirillum brasilense and Pseudomonas fluorescens. The aims of this work were to study A.

View Article and Find Full Text PDF

Biofilms are essential for plant-associated bacteria to colonize their host. In this work, we analysed the interaction of Azospirillum baldaniorum Sp245 and Pseudomonas fluorescens A506 in mixed macrocolony biofilms. We identified certain culture conditions where A.

View Article and Find Full Text PDF

Biocontrol of the nematode Meloidogyne javanica was studied using the Argentinean strains Pseudomonas fluorescens MME3, TAE4, TAR5 and ZME4 and Bacillus sp. B7S, B9T and B19S. Pseudomonas protegens CHA0 was used as a positive control.

View Article and Find Full Text PDF

Azospirillum brasilense Az19 is a plant-beneficial bacterium capable of protecting plants from the negative effects of drought. The objective of this study was to determine and analyze the genomic sequence of strain Az19 as a means of identifying putative stress-adaptation mechanisms. A high-quality draft genome of ca.

View Article and Find Full Text PDF

Bacteria of the Azospirillum and Pseudomonas genera are ubiquitous members of the rhizosphere, where they stimulate plant growth. Given the outstanding capacity of pseudomonads to antagonize other microorganisms, we analyzed the interaction between these two bacterial groups to identify determinants of their compatibility. We could establish that, when in direct contact, certain Pseudomonas strains produce lethality on Azospirillum brasilense cells using an antibacterial type 6 secretion system.

View Article and Find Full Text PDF

Osmotic variations in the soil can affect bacterial growth diminishing the number of inoculated bacteria. In a scenario of water deficit having tolerant bacteria would be beneficial to achieve a better response of the plant to stress. Thus, selection of more resistant bacteria could be useful to design new inoculants to be used in arid zones.

View Article and Find Full Text PDF

Since their discovery, plant-growth promoting rhizobacteria from the genus Azospirillum have been subjected to intensive research due to their biotechnological potential as crop inoculants. Phylogenetic analysis of Azospirillum spp. is carried out by 16S rRNA sequencing almost exclusively, but inconsistencies and low confidence often arise when working with close species.

View Article and Find Full Text PDF

Plant-growth-promoting bacteria belonging to Azospirillum and Pseudomonas genera are major inhabitants of the rhizosphere. Both are increasingly commercialized as crops inoculants. Interspecific interaction in the rhizosphere is critical for inoculants aptness.

View Article and Find Full Text PDF

Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle.

View Article and Find Full Text PDF

We previously reported that Azospirillum brasilense induced a more elastic cell wall and a higher apoplastic water fraction in both wheat coleoptile and flag leaf. These biophysical characteristics could permit increased growth. Knowledge of the biochemical effects the bacteria could elicit in plant cell walls and how these responses change plant physiology is still scarce.

View Article and Find Full Text PDF

The major feature of the plant-growth-promoting bacteria Azospirillum brasilense is its ability to modify plant root architecture. In plants, nitric oxide (NO) mediates indole-3-acetic acid (IAA)-signaling pathways leading to both lateral (LR) and adventitious (AR) root formation. Here, we analyzed aerobic NO production by A.

View Article and Find Full Text PDF

Azospirillum spp. is a well known plant-growth-promoting rhizobacterium. Azospirillum-inoculated plants have shown to display enhanced lateral root and root hair development.

View Article and Find Full Text PDF