Pulse radiolysis was used to study the mechanism of HO(•)-induced polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, in aqueous solution. A step-by-step mechanism has been found which involves a recurrent oxidation process by HO(•) hydroxyl radicals produced by water radiolysis. Furthermore, the cation radical, EDOT(•)(+), has been proposed as the promoter of the first step of polymerization.
View Article and Find Full Text PDFIn this study, a novel and extremely facile method for the synthesis of conducting polypyrrole (PPy) was achieved in aqueous solution. This radiolytic method is totally free of template and environmentally friendly compared with traditional chemical methods. According to ultraviolet-visible (UV-vis) spectroscopy and Fourier transform infrared (FTIR) spectroscopy analysis, pyrrole (Py) monomers were polymerized into PPy thanks to their oxidation by HO(•) radicals produced by the radiolysis of water when exposed to γ irradiation.
View Article and Find Full Text PDFSynthesis of conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) polymers is achieved through the radiolysis of N2O-saturated aqueous solutions of 3,4-ethylenedioxythiophene by using two different oxidizing species: HO(·) (hydroxyl) and N3(·) (azide) radicals. Both oxidative species lead to self-assembled polymers that are evidenced in solution by cryotransmission electron microscopy and UV/Vis absorption spectroscopy and, after centrifugation and deposition, by scanning electron microscopy and attenuated total reflectance FTIR techniques. Whereas HO(·) radicals lead to PEDOT-OH globular nanostructures with hydrophilic properties, N3(·) radicals enable the formation of amphiphilic PEDOT-N3 fibrillar nanostructures.
View Article and Find Full Text PDF