The rapid growth in the use of two dimensional liquid chromatography (2D-LC) applied to the analysis of moderately to highly complex mixtures, has been fueled by continuous improvements in performance and robustness of the instrument components, as well as the ease-of-use of software necessary for controlling the 2D-LC instrument hardware, and analysis of the large data files that result from this type of work. This work has focused on the evaluation of the performance of an online full comprehensive mode (LC×LC), when an active modulation is implemented using a flow splitter pump placed after the D effluent. Two different types of splitting pumps were evaluated: a binary ultra-high pressure liquid chromatography (UHPLC) pump and a high precision syringe pump.
View Article and Find Full Text PDFIn this study, the association constants of sixteen pesticides with the chiral selector octakis(6-O-tert-butyldimethylsilyl-2,3-di-O-acetyl)-γ-cyclodextrin were determined. The procedure only involved a few experimental measurements; namely, gas hold-up time and retention time of pesticides in capillary columns, as well as column phase ratio at each temperature condition. Fundamental equations of gas-liquid chromatography were used to estimate association constants.
View Article and Find Full Text PDFBackground: The latest chromatographic retention models are capable of accurately describe the dependencies of retention over a wide range of experimental conditions. By using a suitable conversion, these models can be transformed into equations expressing the optimization criteria as function of multiples variables. Even though that theoretical models significantly reduce the experimental requirements for optimizations, these models have been barely used.
View Article and Find Full Text PDFNowadays, the higher peak capacity achievable by comprehensive two-dimensional liquid chromatography (LC×LC) for the analysis of vegetal samples is well-recognized. In addition, numerous compounds may be present in very different amounts. Cannabinoids and terpenes represent the main components of Cannabis sativa inflorescence samples, whose quantities are relevant for many application purposes.
View Article and Find Full Text PDFThe main goal of this work is to expand the availability of chiral columns for the analysis of agrochemicals by gas chromatography. A broader offer of chiral stationary phases would allow shifting toward enantioselective analytical techniques environmentally more friendly for those compounds. We prepared seven chiral capillary columns based on derivatives of either, β-cyclodextrin or γ-cyclodextrins dissolved at high concentrations, in two typical polysiloxanes with different polarities, demonstrating not only the significance of the chiral selector but also of the polymer solvent for achieving adequate enantioseparation of some agrochemicals.
View Article and Find Full Text PDFTerpenes and terpenoids are the principal responsible for the aroma of Cannabis, playing an important role in the interaction with the environment. Analytical determination of these compounds can be done by headspace coupled to solid phase micro-extraction (HS-SPME) and then injected in a gas chromatograph. In the present study, we determined distribution constants between gas and polydimetylsiloxane (PDMS), a conventional SPME liquid phase, at three temperatures between 303.
View Article and Find Full Text PDFAbsolute content of terpenes in inflorescences of two strains of Cannabis sativa L., CAT 1 and CAT 3, has been determined. Twenty terpenes commonly present in these samples were quantified by solid phase microextraction combined with gas chromatography and flame ionization detection (SPME/GC-FID).
View Article and Find Full Text PDFThis work demonstrates the potential of two-dimensional liquid chromatography (2D-LC) to increase the resolution capacity of multiple pesticides in a single analysis of samples that contain both chiral and achiral compounds. The setup is based on the combination of a chiral column in the first dimension and an achiral column in the second dimension using the on-line full comprehensive mode (LC × LC). This method was optimized for the separation of 24 pesticides (17 chiral and 7 achiral).
View Article and Find Full Text PDFIn this study, we describe the experimental variables influencing enantioseparation of twelve β-blockers when analyzed under polar-organic, reversed-phase and hydrophilic interaction liquid chromatography conditions on a column with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) as chiral stationary phase. Regarding polar-organic mode, two component mobile phases consisting of methanol, ethanol or acetonitrile with the addition of basic additives such as diethylamine, triethylamine, mono-ethanolamine, ethylendiamine or trifluoroacetic acid/diethylamine mixture were evaluated. Studies of retention at different temperatures were also performed.
View Article and Find Full Text PDFIn this work, the use of different solvents and temperatures was explored, aiming to evaluate their influence on the enantioseparation of pesticides by HPLC in polar-organic conditions, employing a column containing immobilized amylose tris(3-chloro-5-methylphenyl-carbamate). The chiral separation of seventeen different pesticides widely used as herbicides, fungicides, insecticides and precursors were studied. The mobile phases included methanol, ethanol, iso-propanol, n-propanol and acetonitrile; either pure or containing additives such as diethylamine, trifluoroacetic acid, formic acid, acetic acid or mixtures thereof.
View Article and Find Full Text PDFGas chromatographic columns based on ionic liquids (ILs) are very promising since the selectivity of these columns can be tuned by both the cation and the anion chemical nature. In this paper, efficiencies of capillary columns based on four phosphonium ionic liquids were studied. The performance of seven columns containing the cation trihexyl(tetradecyl)phosphonium and the anions bromide, chloride, and bis(trifluoromethylsulfonyl)imide was evaluated by measuring the solute band broadening as a function of gas velocities at three temperatures.
View Article and Find Full Text PDFWe report here gas-liquid partition constants and activity coefficients for thirty-seven volatile organic solutes in ionic liquid trihexyl(tetradecyl)phosphonium dicyanamide measured by gas-liquid chromatography using capillary columns. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.
View Article and Find Full Text PDFA strategy to study thermodynamic binding constants by affinity capillary electrophoresis (ACE) is presented. In order to simplify mathematical treatment, analogy with acid-base dissociation equilibrium is proposed: instead of ligand concentration [X], negative logarithm of ligand concentration (or activity), pX = -log[X], is used. On this base, and taking into account ionic activities, a general procedure for obtaining thermodynamic binding constants is proposed.
View Article and Find Full Text PDFA method to optimize the ligand concentration [S] in the background electrolyte of capillary electrophoresis separations is presented. It is based on the use of a model which predicts apparent electrophoretic mobilities as a function of ligand concentration (expressed as p[S] = -log[S]). This model is employed to compose the expression of a recently proposed criterion to qualify separations in electrophoresis.
View Article and Find Full Text PDFIn this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.
View Article and Find Full Text PDFWe used a permethyl-β-cyclodextrin chiral stationary phase under reversed-phase conditions for the chiral separation of four aryloxyphenoxy-propionate herbicides (fenoxaprop-p-ethyl, quizalofop-p-ethyl and tefuryl, and haloxyfop-p-methyl) with mixtures of methanol, ethanol, 2-propanol, n-propanol, tert-butanol, or acetonitrile and water as mobile phases and investigated the influence of mobile phase composition and column temperature (from 0 to 50°C) on the separation. The retention factors (k) and selectivity factors (α) of all the herbicides investigated decreased with increasing temperature. The lnα versus 1/T and lnk versus 1/T plots for the enantiomers of the chiral pesticides were linear within the range of 0-50°C with all alcohol/water mixtures constituting the mobile phase, but the lnk versus 1/T plots were nonlinear for all the enantiomers chromatographed in acetonitrile/water mixtures.
View Article and Find Full Text PDFIn capillary electrophoresis (CE), resolution (Rs) and selectivity (α) are criteria often used in practice to optimize separations. Nevertheless, when these and other proposed parameters are considered as an elementary criterion for optimization by mathematical maximization, certain issues and inconsistencies appear. In the present work we analyzed the pros and cons of using these parameters as elementary criteria for mathematical optimization of capillary electrophoretic separations.
View Article and Find Full Text PDFChiral capillary GC columns containing different amounts of octakis(6-O-tert-butyldimethylsilyl-2,3-di-O-acetil)-γ-cyclodextrin as chiral selector dissolved in a polymeric matrix were constructed with the aim of determining enantiomeric association constants between a group of well resolved chiral N-trifluoroacetyl amino acid methyl esters and this specific selector at different temperatures. The most relevant sources of uncertainties in the experimental data (hold-up and retention times, and column phase ratios at each temperature) were assessed. These cyclodextrin-based columns are known to enantioseparate a wide variety of chemical compounds, thus, the measurement of the absolute enantioselective constants of a group of solutes with this selector can be useful for systematic studies aimed to a general understanding about how these selectors work.
View Article and Find Full Text PDFStudies on the theoretical principles of acid-base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid-base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid-liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis.
View Article and Find Full Text PDFValuable quantitative information could be obtained from strongly overlapped chromatographic profiles of two enantiomers by using proper chemometric methods. Complete separation profiles where the peaks are fully resolved are difficult to achieve in chiral separation methods, and this becomes a particularly severe problem in case that the analyst needs to measure the chiral purity, i.e.
View Article and Find Full Text PDFOne of the main steps in the manufacture of robust and efficient packed capillary microcolumns for electro- and capillary chromatography is the generation of porous devices to retain the packed beds. Frits based on sintered silica particles have been found to give the best results in terms of mechanical resistance and efficiency. The conventional procedure to produce these kinds of frits consists in a radial heating of the packed material with either a flame or an electrical resistance, but the frits thus obtained have many drawbacks as a result of the procedure rather than the silica per se as the base material.
View Article and Find Full Text PDFThe association constants of several volatile enantiomers with octakis(3-O-butanoyl-2,6-di-O-pentyl)-γ-cyclodextrin at temperatures between 50 and 100 °C were measured by gas-liquid chromatography using capillary columns coated with different amounts of chiral selector dissolved in polysiloxane OV-1701 and prepared with a precisely determined phase ratio. Simple expressions were deduced to estimate the apparent distribution constants from accurate hold-up and retention times along with that known phase ratio at each temperature. The enantiomer-chiral selector association constants were then calculated from the linear regression of the apparent constants as a function of the chiral selector concentration.
View Article and Find Full Text PDFA conventional nonchiral column was used for the enantioseparation of several racemic α-amino acids (native and derivatized) through the use of Cinchona alkaloids as chiral selectors along with Cu(II) ions in chiral ligand-exchange chromatography. The mobile phase composition (i.e.
View Article and Find Full Text PDFThis study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations.
View Article and Find Full Text PDFThe prediction capability of the solvation parameter model in reverse-phase liquid chromatography at different methanol-water mobile phase compositions and temperatures was investigated. By using a carefully selected set of solutes, the training set, linear relationships were established through regression equations between the logarithm of the solute retention factor, logk, and different solute parameters. The coefficients obtained in the regressions were used to create a general retention model able to predict retention in an octadecylsilica stationary phase at any temperature and methanol-water composition.
View Article and Find Full Text PDF