Surface interactions are a concern in microscale separations, where analyte adsorption can decrease the speed, sensitivity, and resolution otherwise achieved by miniaturization. Here, we functionally characterize the surface adsorption of hot-embossed cyclic olefin copolymer (COC) micro free-flow electrophoresis (μFFE) devices using two-dimensional nLC × μFFE separations, which introduce a 3- to 5 s plug of analyte into the device and measure temporal broadening that arises from surface interactions. COC is an attractive material for microfluidic devices, but little is known about its potential for surface adsorption in applications with continuous fluid flow and temporal measurements.
View Article and Find Full Text PDFMicromachines (Basel)
September 2023
The fabrication of high-performance microscale devices in substrates with optimal material properties while keeping costs low and maintaining the flexibility to rapidly prototype new designs remains an ongoing challenge in the microfluidics field. To this end, we have fabricated a micro free-flow electrophoresis (µFFE) device in cyclic olefin copolymer (COC) via hot embossing using a PolyJet 3D-printed master mold. A room-temperature cyclohexane vapor bath was used to clarify the device and facilitate solvent-assisted thermal bonding to fully enclose the channels.
View Article and Find Full Text PDF