Methods Enzymol
November 2024
Carboxysomes are protein-based organelles that serve as the centerpiece of the bacterial CO concentration mechanism (CCM). They are present in all cyanobacteria and many chemoautotrophic proteobacteria and encapsulate the key enzymes for CO fixation, carbonic anhydrase and the carboxylase Rubisco, within a protein shell. The CCM actively accumulates bicarbonate in the cytosol, which diffuses into the carboxysome where carbonic anhydrase rapidly equilibrates it to CO.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Carboxysomes are proteinaceous organelles that encapsulate key enzymes of CO fixation-Rubisco and carbonic anhydrase-and are the centerpiece of the bacterial CO concentrating mechanism (CCM). In the CCM, actively accumulated cytosolic bicarbonate diffuses into the carboxysome and is converted to CO by carbonic anhydrase, producing a high CO concentration near Rubisco and ensuring efficient carboxylation. Self-assembly of the α-carboxysome is orchestrated by the intrinsically disordered scaffolding protein, CsoS2, which interacts with both Rubisco and carboxysomal shell proteins, but it is unknown how the carbonic anhydrase, CsoSCA, is incorporated into the α-carboxysome.
View Article and Find Full Text PDFDespite the importance of microcompartments in prokaryotic biology and bioengineering, structural heterogeneity has prevented a complete understanding of their architecture, ultrastructure, and spatial organization. Here, we employ cryo-electron tomography to image α-carboxysomes, a pseudo-icosahedral microcompartment responsible for carbon fixation. We have solved a high-resolution subtomogram average of the Rubisco cargo inside the carboxysome, and determined the arrangement of the enzyme.
View Article and Find Full Text PDFMany photosynthetic organisms employ a CO concentrating mechanism (CCM) to increase the rate of CO fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an strain engineered to depend on rubisco carboxylation for growth.
View Article and Find Full Text PDFShort linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate.
View Article and Find Full Text PDFBacterial autotrophs often rely on CO concentrating mechanisms (CCMs) to assimilate carbon. Although many CCM proteins have been identified, a systematic screen of the components of CCMs is lacking. Here, we performed a genome-wide barcoded transposon screen to identify essential and CCM-related genes in the γ-proteobacterium Halothiobacillus neapolitanus.
View Article and Find Full Text PDFHub proteins participate in cellular regulation by dynamic binding of multiple proteins within interaction networks. The hub protein LC8 reversibly interacts with more than 100 partners through a flexible pocket at its dimer interface. To explore the diversity of the LC8 partner pool, we screened for LC8 binding partners using a proteomic phage display library composed of peptides from the human proteome, which had no bias toward a known LC8 motif.
View Article and Find Full Text PDFInteractions between modular domains and short linear motifs (3-10 amino acids peptide stretches) are crucial for cell signaling. The motifs typically reside in the disordered regions of the proteome and the interactions are often transient, allowing for rapid changes in response to changing stimuli. The properties that make domain-motif interactions suitable for cell signaling also make them difficult to capture experimentally and they are therefore largely underrepresented in the known protein-protein interaction networks.
View Article and Find Full Text PDFWe have analyzed the effects of mutations inserted during directed evolution of a specialized enzyme, Escherichia coli S-1,2-propanediol oxidoreductase (FucO). The kinetic properties of evolved variants have been determined and the observed differences have been rationalized by modeling the tertiary structures of isolated variants and the wild-type enzyme. The native substrate, S-1,2-propanediol, as well as phenylacetaldehyde and 2S-3-phenylpropane-1,2-diol, which are new substrates accepted by isolated variants, were docked into the active sites.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
August 2013
Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate.
View Article and Find Full Text PDFIn prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp.
View Article and Find Full Text PDFRedesign of glutathione transferases (GSTs) has led to enzymes with remarkably enhanced catalytic properties. Exchange of substrate-binding residues in GST A1-1 created a GST A4-4 mimic, called GIMFhelix, with >300-fold improved activity with nonenal and suppressed activity with other substrates. In the present investigation GIMFhelix was compared with the naturally-evolved GSTs A1-1 and A4-4 by determining catalytic efficiencies with nine alternative substrates.
View Article and Find Full Text PDF