Publications by authors named "Cecilia Blengini"

The Aurora Kinases (AURKs) are a family of serine-threonine protein kinases critical for cell division. Somatic cells express only AURKA and AURKB. However, mammalian germ cells and some cancer cells express all three isoforms.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the significant differences between chromosome segregation in somatic mitosis and germline meiosis, highlighting the variations in kinetochore function and regulatory controls needed for cell division.
  • It identifies a unique mRNA splice isoform of the kinetochore component DSN1 found in germ cells, which allows for its centromere localization without the usual phosphorylation requirement.
  • The research links this germline-specific DSN1 isoform to successful oocyte maturation and fertility in mice, pointing towards the critical role of alternative splicing in regulating cell division across different cell types.
View Article and Find Full Text PDF

Meiotic spindles are critical to ensure chromosome segregation during gamete formation. Oocytes lack centrosomes and use alternative microtubule-nucleation mechanisms for spindle building. How these mechanisms are regulated is still unknown.

View Article and Find Full Text PDF

The human genome contains 24 -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the -like genes and support reproductive capacity during aging.

View Article and Find Full Text PDF

The human genome contains 24 -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the -like genes and support reproductive capacity.

View Article and Find Full Text PDF

Alternative mRNA splicing can generate distinct protein isoforms to allow for the differential control of cell processes across cell types. However, alternative splice isoforms that differentially modulate distinct cell division programs have remained elusive. Here, we demonstrate that mammalian germ cells express an alternate mRNA splice isoform for the kinetochore component, DSN1, a subunit of the MIS12 complex that links the centromeres to spindle microtubules during chromosome segregation.

View Article and Find Full Text PDF

Proper chromosome segregation depends on the establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore.

View Article and Find Full Text PDF

Proper chromosome segregation depends on establishment of bioriented kinetochore-microtubule attachments, which often requires multiple rounds of release and reattachment. Aurora B and C kinases phosphorylate kinetochore proteins to release tensionless attachments. Multiple pathways recruit Aurora B/C to the centromere and kinetochore.

View Article and Find Full Text PDF

Aneuploidy is the leading genetic abnormality causing early miscarriage and pregnancy failure in humans. Most errors in chromosome segregation that give rise to aneuploidy occur during meiosis in oocytes, but why oocyte meiosis is error-prone is still not fully understood. During cell division, cells prevent errors in chromosome segregation by activating the spindle assembly checkpoint (SAC).

View Article and Find Full Text PDF

In Brief: The Aurora protein kinases have critical functions in controlling oocyte meiotic maturation. In this study, we describe an assay for examining their activation state in oocytes and establish the best working doses of three commonly used inhibitors.

Abstract: Several small molecule inhibitors exist for targeting Aurora kinase proteins in somatic cells.

View Article and Find Full Text PDF

Objective: Miscarriages affect 10% of women aged 25-29, and 53% of women over 45. The primary cause of miscarriage is aneuploidy that originated in eggs. The Aurora kinase family has three members that regulate chromosome segregation.

View Article and Find Full Text PDF

The purpose of meiosis is to generate developmentally competent, haploid gametes with the correct number of chromosomes. For reasons not completely understood, female meiosis is more prone to chromosome segregation errors than meiosis in males, leading to an abnormal number of chromosomes, or aneuploidy, in gametes. Meiotic spindles are the cellular machinery essential for the proper segregation of chromosomes.

View Article and Find Full Text PDF

A hallmark of advanced maternal age is a significant increase in meiotic chromosome segregation errors, resulting in early miscarriages and congenital disorders. These errors most frequently occur during meiosis I (MI). The spindle assembly checkpoint (SAC) prevents chromosome segregation errors by arresting the cell cycle until proper chromosome alignment is achieved.

View Article and Find Full Text PDF
Article Synopsis
  • Mis-segregation of chromosomes during meiosis can lead to embryonic aneuploidy, a major cause of pregnancy loss, and the MMR genes MLH1 and MLH3 are essential for proper chromosome separation in mice.
  • Variants (SNPs) in MLH1 and MLH3 are linked to fertility issues and colorectal cancer, prompting research using yeast and mouse models to investigate their effect on reproduction.
  • The study discovered that seven specific alleles lead to reproductive defects in mice, including decreased litter size and increased embryo resorption, indicating that certain gene variants may heighten the risk of pregnancy loss due to chromosomal abnormalities in females.
View Article and Find Full Text PDF

The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known.

View Article and Find Full Text PDF

Most reproductive biologists who study female gametes will agree with the 16th century anatomist William Harvey's doctrine: 'Ex Ovo Omnia'. This phrase, which literally translates to 'everything from the egg', recognizes the centrality of the egg in animal development. Eggs are most impressive cells, capable of supporting development of an entirely new organism following fertilization or parthenogenetic activation.

View Article and Find Full Text PDF

Sirtuins are NAD-dependent protein deacylases and ADP-ribosyltransferases that are involved in a wide range of cellular processes including genome homeostasis and metabolism. Sirtuins are expressed in human and mouse oocytes yet their role during female gamete development are not fully understood. Here, we investigated the role of a mammalian sirtuin member, SIRT7, in oocytes using a mouse knockout (KO) model.

View Article and Find Full Text PDF

Immunofluorescence is a useful technique for analysis of protein expression and localization, thereby providing information regarding protein function, regulation, and protein-protein interactions. It is a standard approach to determine the temporal and spatial location of gene products that function in oocyte meiotic maturation. Fixation is one of the critical steps in the immunofluorescence protocol.

View Article and Find Full Text PDF

During oocyte meiotic maturation, Aurora kinase C (AURKC) is required to accomplish many critical functions including destabilizing erroneous kinetochore-microtubule (K-MT)attachments and regulating bipolar spindle assembly. How localized activity of AURKC is regulated in mammalian oocytes, however, is not fully understood. Female gametes from many species, including mouse, contain stores of maternal transcripts that are required for downstream developmental events.

View Article and Find Full Text PDF

The reproductive traits of males are under influence of sexual pressures before and after copulation. The strength of sexual selection varies across populations because they undergo varying competition for mating opportunities. Besides intraspecific pressures, individuals seem to be subjected to pressures driven by interspecific interactions in sympatry.

View Article and Find Full Text PDF

In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success.

View Article and Find Full Text PDF

How females store and use sperm after remating can generate postcopulatory sexual selection on male ejaculate traits. Variation in ejaculate performance traits generally is thought to be intrinsic to males but is likely to interact with the environment in which sperm compete (e.g.

View Article and Find Full Text PDF

Human spermatozoa may chemotactically find out the egg by following an increasing gradient of attractant molecules. Although human spermatozoa have been observed to show several of the physiological characteristics of chemotaxis, the chemotactic pattern of movement has not been easy to describe. However, it is apparent that chemotactic cells may be identified while returning to the attractant source.

View Article and Find Full Text PDF