Objectives: We tested the hypothesis that the respiratory compensation point can be accurately determined in healthy participants during incremental cycling exercise using non-invasive near-infrared spectroscopy-derived measures of deoxygenated hemoglobin (deoxyHb).
Design: Validation study.
Methods: 118 healthy men (average age 47 ± 19 yrs, range 20-79 yrs) performed an incremental cycling test to exhaustion.
The authors developed and validated a "tailored" version of the Astrand-Rhyming step test (tA-R) and a new equation for VO2max prediction in older adults (OA). Sixty subjects (age 68 ± 4 yr, 30 male, 30 female) performed their tA-R step test (5-min, 30-cm step, tailored stepping rate) and an incremental cycling test to exhaustion. VO2max was (a) predicted using the standard A-R equation (predicted VO2max), (b) predicted based on the authors' new multiple linear equation (equation VO2max), and (c) directly measured by incremental cycling test (direct VO2max).
View Article and Find Full Text PDFPurpose: We tested the hypothesis that the maximal lactate steady state (MLSS) can be accurately determined in healthy subjects based on measures of deoxygenated hemoglobin (deoxyHb), an index of oxygen extraction measured noninvasively by near-infrared spectroscopy (NIRS).
Methods: Thirty-two healthy men (mean ± SD age = 48 ± 17 yr, range = 23-74 yr) performed an incremental cycling test to exhaustion and square wave tests for MLSS determination. Cardiorespiratory variables were measured bbb and deoxyHb was monitored noninvasively on the right vastus lateralis with a quantitative NIRS device.