Publications by authors named "Cecilia A"

This paper presents the design and implementation of a deep-learning-based observer for accurately estimating the State of Charge (SoC) of a vanadium flow battery. The novelty of the proposal lies in its direct use of terminal voltage and the application of a machine learning algorithm to model the battery's overpotentials, leading to greater accuracy and reduced complexity compared to classical models. The overpotentials model consists of a neural network trained using data generated by a classical observer that estimates species concentration using a physical electrochemical model and the open-circuit voltage measurement.

View Article and Find Full Text PDF

Introduction: The advancement of antimicrobial resistance is a significant public health issue today. With the spread of resistant bacterial strains in water resources, especially in urban sewage, metagenomic studies enable the investigation of the microbial composition and resistance genes present in these locations. This study characterized the bacterial community and antibiotic resistance genes in a sewage system that receives effluents from various sources through metagenomics.

View Article and Find Full Text PDF

We derive a phase retrieval formula for propagation-based phase contrast X-ray imaging that does not require weakly attenuating objects or short propagation distances. It is directly applicable to both single- and multiple-distance scenarios. We show the validity conditions and study the error of the underlying mutual intensity approximation, which uses the common assumptions of weak phase shift variations and phase-attenuation duality.

View Article and Find Full Text PDF

Water management in polymer electrolyte membrane fuel cells (PEMFCs) is one of the most challenging issues affecting PEMFC efficiency and lifetime. The unavailability of reliably liquid water saturation sensors hinders the applicability of liquid water active control and supervision techniques. A promising technique that can be applied in this context are high-gain observers.

View Article and Find Full Text PDF

Due to costs of setting up and operating electrical stirring systems to keep algae in suspension and exposed to light, cultivation of monospecific algae is poorly expanded in developing countries. However, some algal species, such as Arthrospira platensis, are equipped with gaseous vesicles that allow them to stay afloat and increase their exposure to light. In this study, we investigated in an unstirred outdoor environment, its growth kinetic and purifying performance in a brewery effluent-based media.

View Article and Find Full Text PDF

During gastrulation, leading edge mesendoderm (LEM) advances animally as a wedge-shaped cell mass over the vegetally moving blastocoel roof (BCR). We show that close contact across the BCR-LEM interface correlates with attenuated net advance of the LEM, which is pulled forward by tip cells while the remaining LEM frequently separates from the BCR. Nevertheless, lamellipodia persist on the detached LEM surface.

View Article and Find Full Text PDF

Precis: Micropulse transscleral cyclophotocoagulation (MPTCP) is only moderately effective in lowering intraocular pressure (IOP) and is useful as an adjunct procedure to other glaucoma surgeries. There was a small risk of loss of vision, prolonged hypotony, and phthisis bulbi.

Aim: The aim of this study was to determine the efficacy and safety of a single MPTCP treatment for an Asian population with advanced glaucoma.

View Article and Find Full Text PDF

Climate change increases the occurrence of prolonged drought periods with large implications for forest functioning. Scots pine () is one of the most abundant conifers worldwide, and evidence is rising that its resilience to severe drought is limited. However, we know little about its ability to recover from drought-induced embolism.

View Article and Find Full Text PDF

The present work focuses on the development of novel multicomponent organic-inorganic hydrogel composites for bone tissue engineering. For the first time, combination of the organic components commonly used in food industry, namely whey protein isolate (WPI) and gelatin from bovine skin, as well as inorganic material commonly used as a major component of hydraulic bone cements, namely α-TCP in various concentrations (0-70 wt%) was proposed. The results showed that α-TCP underwent incomplete transformation to calcium-deficient hydroxyapatite (CDHA) during preparation process of the hydrogels.

View Article and Find Full Text PDF

Prism arrays arranged to form a slightly open alligator mouth were found to focus incident X-rays, as with increasing distance from the object symmetry axis these rays hit an increasing number of refracting prism tips. Such an object is then formally a refractive lens. Due to the strong energy dependence of the refractive index of material for X-rays a refractive X-ray lens is chromatically focusing.

View Article and Find Full Text PDF

Elaboration of novel biocomposites providing simultaneously both biodegradability and stimulated bone tissue repair is essential for regenerative medicine. In particular, piezoelectric biocomposites are attractive because of a possibility to electrically stimulate cell response. In the present study, novel CaCO-mineralized piezoelectric biodegradable scaffolds based on two polymers, poly[( R)3-hydroxybutyrate] (PHB) and poly[3-hydroxybutyrate- co-3-hydroxyvalerate] (PHBV), are presented.

View Article and Find Full Text PDF

Hybrid 3D scaffolds composed of different biomaterials with fibrous structure or enriched with different inclusions (i.e., nano- and microparticles) have already demonstrated their positive effect on cell integration and regeneration.

View Article and Find Full Text PDF

This article reports on a study of the mineralisation behaviour of CaCO deposited on electrospun poly(ε-caprolactone) (PCL) scaffolds preliminarily treated with low-temperature plasma. This work was aimed at developing an approach that improves the wettability and permeability of PCL scaffolds in order to obtain a superior composite coated with highly porous CaCO, which is a prerequisite for biomedical scaffolds used for drug delivery. Since PCL is a synthetic polymer that lacks functional groups, plasma processing of PCL scaffolds in O, NH, and Ar atmospheres enables introduction of highly reactive chemical groups, which influence the interaction between organic and inorganic phases and govern the nucleation, crystal growth, particle morphology, and phase composition of the CaCO coating.

View Article and Find Full Text PDF

Head injury is common and preventable. Assessment of the head injury patient includes airway, cervical spine protection, breathing, circulation, haemorrhage control and the Glasgow Coma Scale. Hypotension, hypoxia, hypocarbia and hypercarbia should be avoided by continuous monitoring of vital signs and hourly head chart to prevent secondary brain injury.

View Article and Find Full Text PDF

Prostate cancer (PCa) currently is the second most diagnosed cancer in men and the second most cause of cancer death after lung cancer in Western societies. This sets the necessity of modelling prostatic disorders to optimize a therapy against them. The conventional approach to investigating prostatic diseases is based on two-dimensional (2D) cell culturing.

View Article and Find Full Text PDF

We present an improved, single-distance phase retrieval algorithm applicable for holographic X-ray imaging of biological objects for an in-line germanium Bragg Magnifier Microscope (BMM). The proposed algorithm takes advantage of a modified shrink-wrap algorithm for phase objects, robust unwrapping algorithm as well as other reasonable constraints applied to the wavefield at the object and the detector plane. The performance of the algorithm is analyzed on phantom objects and the results are shown and discussed.

View Article and Find Full Text PDF

In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze-drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition.

View Article and Find Full Text PDF

The article discusses general structure and dynamics of the sports science research content as obtained from the analysis of 21998 European College of Sport Science abstracts belonging to 12 science topics. The structural analysis showed intertwined multidisciplinary and unifying tendencies structured along horizontal (scope) and vertical (level) axes. Methodological (instrumental and mode of inquiry) integrative tendencies are dominant.

View Article and Find Full Text PDF

The physical and mechanical properties of the tumor microenvironment are crucial for the growth, differentiation and migration of cancer cells. However, such microenvironment is not found in the geometric constraints of 2D cell culture systems used in many cancer studies. Prostate cancer research, in particular, suffers from the lack of suitable in vitro models.

View Article and Find Full Text PDF

The thorax morphology, especially the muscles and the tracheal system of three flightless species of Cryptorhynchinae is examined by digital 3D reconstructions based on synchrotron X-ray microtomography and compared to other Curculionidae. Wings, metanepisternites, and muscles functional in flight are fully reduced in the species examined: Kyklioacalles roboris (Curtis), Trigonopterus scharfi Riedel and Trigonopterus vandekampi Riedel. All three share the same set of thoracic muscles, but differences exist in the shape and size of muscles.

View Article and Find Full Text PDF

We report on the successful demonstration of X-ray phase contrast microscopy and micro computed tomography (CT) with a Bragg magnifier microscope (BMM) in a laboratory setup. The Bragg magnifiers, constituted by two channel-cut crystals in asymmetric diffraction, produced a 15X magnification of the X-ray beam, thus enabling high resolution imaging to be attained. The angular sensitivity of the crystals was used to implement analyzer-based phase contrast imaging: acquiring images at different angular positions and the three parametric images (apparent absorption, differential phase and scattering) have been obtained.

View Article and Find Full Text PDF

Little is known regarding the evolution of coronary aneurysms. We report on a rapidly growing coronary pseudoaneurysm with the aim to underline the reasons for rapid coronary aneurysm enlargement and the different therapeutics options available to face this rare clinical condition.

View Article and Find Full Text PDF

We present the theoretical description of the image formation with the in-line germanium Bragg Magnifier Microscope (BMM) and the first successful phase retrieval of X-ray holograms recorded with this imaging system. The conditions under which the BMM acts as a linear shift invariant system are theoretically explained and supported by the experiment. Such an approach simplifies the mathematical treatment of the image formation and reconstruction as complicated propagation of the wavefront onto inclined planes can be avoided.

View Article and Find Full Text PDF

Spectroscopic x-ray imaging based on pixellated semiconductor detectors can be sensitive to charge sharing and K-fluorescence, depending on the sensor material used, its thickness and the pixel pitch employed. As a consequence, spectroscopic resolution is partially lost. In this paper, we study a new detector ASIC, the Medipix3RX, that offers a novel feature called charge summing, which is established by making adjacent pixels communicate with each other.

View Article and Find Full Text PDF

High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance.

View Article and Find Full Text PDF