Cranial radiotherapy in children has detrimental effects on cognition, mood, and social competence in young cancer survivors. Treatments harnessing hippocampal neurogenesis are currently of great relevance in this context. Lithium, a well-known mood stabilizer, has both neuroprotective, pro-neurogenic as well as antitumor effects, and in the current study we introduced lithium treatment 4 weeks after irradiation.
View Article and Find Full Text PDFBrain injury is associated with neuroinflammation, and microglia are key players in this process. Microglia can acquire pro-inflammatory or anti-inflammatory properties, but how this affects neural stem cells (NSCs) remains controversial. Here, NSCs were grown in conditioned media collected from either non-stimulated microglia, or microglia stimulated with pro- or anti-inflammatory agents.
View Article and Find Full Text PDFThe relative contribution of resident microglia and peripheral monocyte-derived macrophages in neuroinflammation after cranial irradiation is not known. A single dose of 8 Gy was administered to postnatal day 10 (juvenile) or 90 (adult) CX3CR1GFP/+ CCR2RFP/+ mouse brains. Microglia accumulated in the subgranular zone of the hippocampal granule cell layer, where progenitor cell death was prominent.
View Article and Find Full Text PDFBackground: Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking.
Methods: Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA).
Introduction: Neuropathic pain is believed to be influenced in part by inflammatory processes. In this study we examined the effect of variability in the C-type lectin gene cluster (Aplec) on the development of neuropathic pain-like behavior after ligation of the L5 spinal nerve in the inbred DA and the congenic Aplec strains, which carries seven C-type lectin genes originating from the PVG strain.
Results: While both strains displayed neuropathic pain behavior early after injury, the Aplec strain remained sensitive throughout the whole study period.
The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration.
View Article and Find Full Text PDFBackground: C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection.
View Article and Find Full Text PDFNeuropathic pain conditions are common after nerve injuries and are suggested to be regulated in part by genetic factors. We have previously demonstrated a strong genetic influence of the rat major histocompatibility complex on development of neuropathic pain behavior after peripheral nerve injury. In order to study if the corresponding human leukocyte antigen complex (HLA) also influences susceptibility to pain, we performed an association study in patients that had undergone surgery for inguinal hernia (n=189).
View Article and Find Full Text PDFBackground: Neuropathic pain after injury to the nervous system is a difficult clinical problem. Sex differences in the development of neuropathic pain have not been well established experimentally or clinically.
Objective: Rats were used to examine sex differences in localized and spread mechanical hypersensitivity after partial injury to their infraorbital or sciatic nerves in a model of neuropathic pain.
We have recently shown that the major histocompatibility complex (MHC) exerts a regulatory influence on the development of neuropathic pain-like behaviors after partial sciatic nerve injury in male rats. In the present study, we assessed the role of the MHC in peripheral nerve injury-induced pain as well as central pain following spinal cord injury in female rats using the following inbred strains: Dark Agouti (DA; RT1(av1)), Piebald Virol Glaxo (PVG; RT1(c)) and in the MHC-congenic strain PVG-RT1(av1). In line with our previous observation in male rats, PVG-RT1(c) displayed more severe allodynia compared to the strains carrying the RT1(av1) haplotype (PVG-RT1(av1) and DA-RT1(av1)) following sciatic nerve injury in female rats.
View Article and Find Full Text PDFWe have previously demonstrated that differences in neuropathic pain-like behaviors after sciatic nerve injury genetically maps to the major histocompatibility complex (MHC) in rats carrying RT1(c) or RT1(av1) haplotypes on the Piebald Virol Glaxo (PVG) background. In order to further explore the genetic contribution to neuropathic pain, we have here examined the MHC-congenic rat strains PVG-RT1(n) and PVG-RT1(av1) and the inbred strains PVG (RT1(c)) and Brown-Norway (BN; RT1(n)). All studied strains developed mechanical hypersensitivity (allodynia-like behavior) of the hind paw after photochemically induced sciatic nerve injury.
View Article and Find Full Text PDFNeuropathic pain is a common consequence of damage to the nervous system. We here report a genetic analysis of development of neuropathic pain-like behaviors after unilateral photochemically-induced ischemic sciatic nerve injury in a panel of inbred rat strains known to display different susceptibility to autoimmune neuroinflammation. Pain behavior was initially characterized in Dark-Agouti (DA; RT1(av1)), Piebald Virol Glaxo (PVG; RT1(c)), and in the major histocompatibility complex (MHC)-congenic strain PVG-RT1(av1).
View Article and Find Full Text PDF