Publications by authors named "Cecile Valsecchi"

Enantioselective hydrogenation of olefins by Rh-based chiral catalysts has been extensively studied for more than 50 years. Naively, one would expect that everything about this transformation is known and that selecting a catalyst that induces the desired reactivity or selectivity is a trivial task. Nonetheless, ligand engineering or selection for any new prochiral olefin remains an empirical trial-error exercise.

View Article and Find Full Text PDF

Mass spectrometry (MS) is widely used for the identification of chemical compounds by matching the experimentally acquired mass spectrum against a database of reference spectra. However, this approach suffers from a limited coverage of the existing databases causing a failure in the identification of a compound not present in the database. Among the computational approaches for mining metabolite structures based on MS data, one option is to predict molecular fingerprints from the mass spectra by means of chemometric strategies and then use them to screen compound libraries.

View Article and Find Full Text PDF

Neural networks are rapidly gaining popularity in chemical modeling and Quantitative Structure-Activity Relationship (QSAR) thanks to their ability to handle multitask problems. However, outcomes of neural networks depend on the tuning of several hyperparameters, whose small variations can often strongly affect their performance. Hence, optimization is a fundamental step in training neural networks although, in many cases, it can be very expensive from a computational point of view.

View Article and Find Full Text PDF

Nuclear receptors (NRs) are key regulators of human health and constitute a relevant target for medicinal chemistry applications as well as for toxicological risk assessment. Several open databases dedicated to small molecules that modulate NRs exist; however, depending on their final aim (i.e.

View Article and Find Full Text PDF

Consensus strategies have been widely applied in many different scientific fields, based on the assumption that the fusion of several sources of information increases the outcome reliability. Despite the widespread application of consensus approaches, their advantages in quantitative structure-activity relationship (QSAR) modeling have not been thoroughly evaluated, mainly due to the lack of appropriate large-scale data sets. In this study, we evaluated the advantages and drawbacks of consensus approaches compared to single classification QSAR models.

View Article and Find Full Text PDF

In the recent years, ecotoxicological hazard potential of biocidal products has been receiving increasing attention in the industries and regulatory agencies. Biocides/pesticides are currently one of the most studied groups of compounds, and their registration cannot be done without the empirical toxicity information. In view of limited experimental data available for these compounds, we have developed Quantitative Structure-Activity Relationship (QSAR) models for the toxicity of biocides to fish and Daphnia magna following principles of QSAR modeling recommended by the OECD (Organization for Economic Cooperation and Development).

View Article and Find Full Text PDF

Legislators have included bioaccumulation in the evaluation of chemicals in the framework of the European Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. REACH requires information on the bioconcentration factor (BCF), which is a parameter for assessing bioaccumulation and encourages the use of a weight-of-evidence approach, including predictions from quantitative structure-activity relationships (QSARs). This study presents a novel approach, based on structural alerts, to be used as a decision-support system for the identification of substances with bioaccumulation potential.

View Article and Find Full Text PDF