Publications by authors named "Cecile Ribot"

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease.

View Article and Find Full Text PDF

The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays.

View Article and Find Full Text PDF

Magnaporthe oryzae is a fungal plant pathogen of many grasses including rice. Since arabinoxylan is one of the major components of the plant cell wall of grasses, M. oryzae is likely to degrade this polysaccharide for supporting its growth in infected leaves.

View Article and Find Full Text PDF

Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M.

View Article and Find Full Text PDF

A gene (MoPRD1), related to xylose reductases, was identified in Magnaporthe oryzae. Recombinant MoPRD1 displays its highest specific reductase activity toward L-arabinose and D-xylose. Km and Vmax values using L-arabinose and D-xylose are similar.

View Article and Find Full Text PDF

Effector proteins are key elements in plant-fungal interactions. The rice blast fungus Magnaporthe oryzae secretes numerous effectors that are suspected to be translocated inside plant cells. However, their cellular targets and the mechanisms of translocation are still unknown.

View Article and Find Full Text PDF

Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA.

View Article and Find Full Text PDF

Magnaporthe oryzae is the most damaging fungal pathogen of rice (Oryza sativa). In this study, we characterized the TIG1 transducin beta-like gene required for infectious growth and its interacting genes that are required for plant infection in this model phytopathogenic fungus. Tig1 homologs in yeast and mammalian cells are part of a conserved histone deacetylase (HDAC) transcriptional corepressor complex.

View Article and Find Full Text PDF
Article Synopsis
  • L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are enzymes that degrade common sugars, L-arabinose and D-xylose, with XDH also showing activity on D-sorbitol, unlike LAD.
  • A phylogenetic analysis revealed that these enzymes, along with D-sorbitol dehydrogenases (SDH), evolved from a common ancestor, forming three distinct groups.
  • The study identified two specific residues in LAD (M70 and Y318) that influence its ability to function with D-sorbitol, with mutations in Y318 increasing its activity with L-arabitol and xylitol while enhancing affinity for D-sorbitol.
View Article and Find Full Text PDF

Expression of AtPHO1;H10, a member of the Arabidopsis (Arabidopsis thaliana) PHO1 gene family, is strongly induced following numerous abiotic and biotic stresses, including wounding, dehydration, cold, salt, and pathogen attack. AtPHO1;H10 expression by wounding was localized to the cells in the close vicinity of the wound site. AtPHO1;H10 expression was increased by application of the jasmonic acid (JA) precursor 12-oxo-phytodienoic acid (OPDA), but not by JA or coronatine.

View Article and Find Full Text PDF

The PHO1 protein is involved in loading inorganic phosphate (Pi) to the root xylem. Ten genes homologous to AtPHO1 are present in the Arabidopsis thaliana (L.) Heyn genome.

View Article and Find Full Text PDF

The interaction between rice and the blast fungus Magnaporthe grisea is the focus of extensive studies on rice disease resistance and fungal infection mechanisms. Here, we review the characteristics of susceptible rice blast infections in terms of physiology, cytology and both host and pathogen transcriptional responses. The success of the infection and the type of disease symptoms strongly depend on environmental and developmental cues.

View Article and Find Full Text PDF

The PHO1 family comprises 11 members in Arabidopsis thaliana. In order to decipher the role of these genes in inorganic phosphate (Pi) transport and homeostasis, complementation of the pho1 mutant, deficient in loading Pi to the root xylem, was determined by the expression of the PHO1 homologous genes under the control of the PHO1 promoter. Only PHO1 and the homologue PHO1;H1 could complement pho1.

View Article and Find Full Text PDF

PHO1 has been recently identified as a protein involved in the loading of inorganic phosphate into the xylem of roots in Arabidopsis. The genome of Arabidopsis contains 11 members of the PHO1 gene family. The cDNAs of all PHO1 homologs have been cloned and sequenced.

View Article and Find Full Text PDF

Recent results are in favour of a role for NFU-like proteins in Fe-S cluster biogenesis. These polypeptides share a conserved CXXC motif in their NFU domain. In the present study, we have characterized Arabidopsis thaliana NFU1-5 genes.

View Article and Find Full Text PDF