Deposition of the exon junction complex (EJC) upstream of exon-exon junctions helps maintain transcriptome integrity by preventing spurious re-splicing events in already spliced mRNAs. Here we investigate the importance of EJC for the correct splicing of the 2.2-megabase-long human DMD pre-mRNA, which encodes dystrophin, an essential protein involved in cytoskeletal organization and cell signaling.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting following repeated muscle damage and inadequate regeneration. Impaired myogenesis and differentiation play a major role in DMD as well as intracellular calcium (Ca) mishandling. Ca release from the sarcoplasmic reticulum is mostly mediated by the type 1 ryanodine receptor (RYR1) that is required for skeletal muscle differentiation in animals.
View Article and Find Full Text PDFThe adrenal glands participate in cardiovascular (CV) physiology and the pathophysiology of CV diseases through their effects on sodium and water metabolism, vascular tone and cardiac function. In the present study, we identified a new adrenal compound controlling mesenchymal cell differentiation that regulates osteoblastic differentiation in the context of vascular calcification. This peptide was named the "calcification blocking factor" (CBF) due to its protective effect against vascular calcification and is released from chromogranin A via enzymatic cleavage by calpain 1 and kallikrein.
View Article and Find Full Text PDFMedial vascular calcification (MVC) is a highly prevalent disease associated with a high risk of severe, potentially lethal, complications. While animal studies may not systematically be circumvented, in vitro systems have been proven useful to study disease physiopathology. In the context of MVC, the absence of a clinically relevant standardized in vitro method prevents the appropriate comparison and overall interpretation of results originating from different experiments.
View Article and Find Full Text PDFSeparately, polyphenols and exercise are known to prevent insulin resistance (IR) but their combined curative effects on established obesity and IR require further investigation. Therefore, we compared the metabolic effects of a combination of exercise and grape polyphenols supplementation in obese IR rats with high-fat diet (EXOPP) to the effect of high-fat diet alone (HF) or with a nutritional supplementation of grape polyphenols (PP) or with endurance exercise (EXO) during 8 wks. We observed an improvement of systemic and skeletal muscle insulin sensitivity in EXO and EXOPP rats.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2017
Besides its role in calcium (Ca) homeostasis, the sarco-endoplamic reticulum (SR/ER) controls protein folding and is tethered to mitochondria. Under pathophysiological conditions the unfolded protein response (UPR) is associated with disturbance in SR/ER-mitochondria crosstalk. Here, we investigated whether ER stress altered SR/ER-mitochondria links, Ca handling and muscle damage in WT (Wild Type) and mdx mice, the murine model of Duchenne Muscular Dystrophy (DMD).
View Article and Find Full Text PDFGastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and are often associated with KIT or PDGFRA gene mutations. GIST cells might arise from the interstitial cells of Cajal (ICCs) or from a mesenchymal precursor that is common to ICCs and smooth muscle cells (SMCs). Here, we analyzed the mRNA and protein expression of RNA-Binding Protein with Multiple Splicing-2 (RBPMS2), an early marker of gastrointestinal SMC precursors, in human GISTs (n=23) by in situ hybridization, quantitative RT-PCR analysis and immunohistochemistry.
View Article and Find Full Text PDFBackground & Aims: Gastrointestinal development requires regulated differentiation of visceral smooth muscle cells (SMCs) and their contractile activities; alterations in these processes might lead to gastrointestinal neuromuscular disorders. Gastrointestinal SMC development and remodeling involves post-transcriptional modification of messenger RNA. We investigated the function of the RNA-binding protein for multiple splicing 2 (RBPMS2) during normal development of visceral smooth muscle in chicken and expression of its transcript in human pathophysiological conditions.
View Article and Find Full Text PDFThe neural crest (NC) is a stem cell-like population that arises at the border of neural and non-neural ectoderm. During development, NC undergoes an epithelio-mesenchymal transition (EMT), i.e.
View Article and Find Full Text PDFAldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity.
View Article and Find Full Text PDFUnlabelled: The potential role and function of gastrokine-1 (GNK1) in smooth muscle cells is investigated in this work by first establishing a preparative protocol to obtain this native protein from freshly dissected chicken gizzard. Some unexpected biochemical properties of gastrokine-1 were deduced by producing specific polyclonal antibody against the purified protein. We focused on the F-actin interaction with gastrokine-1 and the potential role and function in smooth muscle contractile properties.
View Article and Find Full Text PDFRho GTPases play central roles in the control of cell adhesion and migration, cell cycle progression, growth, and differentiation. However, although most of our knowledge of Rho GTPase function comes from the study of the three classic Rho GTPases RhoA, Rac1, and Cdc42, recent studies have begun to explore the expression, regulation, and function of some of the lesser-known members of the Rho GTPase family. In the present study, we cloned the avian orthologues of RhoV (or Chp for Cdc42 homologous protein) and RhoU (or Wrch-1 for Wnt-regulated Cdc42 homolog-1) and examined their expression patterns by in situ hybridization analysis both during early chick embryogenesis and later on, during gastrointestinal tract development.
View Article and Find Full Text PDFNew therapeutic strategies for ovarian cancer include the identification of involved signaling pathways that could potentially serve as a source of biomarkers for early stages of the disease. In this study, we show that the embryonic male prostaglandin D synthase (Pgds)/SOX9 pathway is expressed at both the RNA and protein levels in different types of human ovarian tumors, pointing to Pgds and SOX9 as possible diagnostic markers for ovarian carcinomas. Using ovarian cancer cell lines, we found, first, that components of the Pgds/SOX9 pathway are expressed in these cells, and second, that treatment of these cells with prostaglandin D2 (PGD2) can inhibit their growth via its DP1 receptor and induce apoptosis.
View Article and Find Full Text PDFSOX9 is an essential activating transcription factor that plays a critical role in Sertoli cell differentiation and subsequent testis cord formation. Cytoplasmic SOX9 is present in both sexes during early gonadal embryogenesis. While in males the protein is later translocated into the nucleus of pre-Sertoli cells, its expression is rapidly turned off in females.
View Article and Find Full Text PDFDuring mammalian gonadal development, nuclear import/export of the transcription factor SOX9 is a critical step of the Sry-initiated testis-determining cascade. In this study, we identify a molecular mechanism contributing to the SOX9 nuclear translocation in NT2/D1 cells, which is mediated by the prostaglandin D2 (PGD2) signalling pathway via stimulation of its adenylcyclase-coupled DP1 receptor. We find that activation of cAMP-dependent protein kinase A (PKA) induces phosphorylation of SOX9 on its two S64 and S181 PKA sites, and its nuclear localization by enhancing SOX9 binding to the nucleocytoplasmic transport protein importin beta.
View Article and Find Full Text PDFAutoinflammatory diseases are defined as illnesses caused by primary dysfunction of the innate immune system. This new concept includes a broad number of disorders, but the spotlight has been focused for the past two years on periodic fevers (familial Mediterranean fever [FMF]; mevalonate kinase deficiency [MVK]; tumor necrosis factor [TNF] receptor-associated periodic syndrome [TRAPS]; cryopyrin-associated periodic syndrome [CAPS]), Crohn's disease and Blau syndrome, thanks to the recent understanding of their molecular basis. Indeed, until recently, these conditions were defined only by phenotypical features, the main ones being recurrent attacks of fever, abdominal pain, arthritis, and cutaneous signs, which sometimes overlap, obscuring diagnosis.
View Article and Find Full Text PDFObjective: Familial Mediterranean fever (FMF) is the most common inherited periodic syndrome. The disease phenotype and the almost exclusive expression of the causative gene, MEFV, in leukocytes suggest that this gene plays an important role in the inflammatory cascade. Since most of the known mutations are conservative, we sought to determine how minor DNA defects can give rise to the dramatic phenotypic features seen in FMF.
View Article and Find Full Text PDF