Publications by authors named "Cecile Moucheron"

A new family of heteroleptic diimine-diphosphine copper(I) complexes is reported, with six new complexes compared to benchmark [Cu(bcp)(DPEPhos)]PF . These new complexes are based on 1,4,5,8-tetraazaphenanthrene (TAP) ligands with representative electronic properties as well as substitution patterns and DPEPhos and XantPhos as diphosphine ligands. Their photophysical and electrochemical properties were investigated and correlated with the number and position of substituents on the TAP ligands.

View Article and Find Full Text PDF

Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections.

View Article and Find Full Text PDF

Using a chemical approach to crosslink functionally versatile bioeffectors (such as peptides) to native proteins of interest (POI) directly inside a living cell is a useful toolbox for chemical biologists. However, this goal has not been reached due to unsatisfactory chemoselectivity, regioselectivity, and protein selectivity in protein labeling within living cells. Herein, we report the proof of concept of a cytocompatible and highly selective photolabeling strategy using a tryptophan-specific Ru-TAP complex as a photocrosslinker.

View Article and Find Full Text PDF

An efficient and general process is reported for the photoinduced, copper-catalysed direct perfluoroalkylation of C-H bonds in a broad range of heteroarenes with commercially available perfluoroalkyl iodides. This redox neutral process is simply based on the use of [Cu(bcp)DPEPhos]PF as the photoredox catalyst in the presence of potassium acetate and smoothly operates at room temperature.

View Article and Find Full Text PDF

Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)dppz] when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest.

View Article and Find Full Text PDF

A general anti-Baldwin radical 4-exo-dig cyclization from nitrogen-substituted alkynes is reported. Upon reaction with a heteroleptic copper complex in the presence of an amine and under visible light irradiation, a range of ynamides were shown to smoothly cyclize to the corresponding azetidines, useful building blocks in natural product synthesis and medicinal chemistry, with full control of the regioselectivity of the cyclization resulting from a unique and underrated radical 4-exo-dig pathway.

View Article and Find Full Text PDF

The ligand PHEHAT (PHEHAT = 1,10-phenanthrolino[5,6-]1,4,5,8,9,12-hexaazatriphenylene) presents a structural asymmetry that has a dramatic influence on the photophysical properties depending on the chelation site of the metal ion in the linkage isomers. While [Ru(phen)HATPHE] behaves classically, like [Ru(bpy)], [Ru(phen)PHEHAT] exhibits an unusual behavior. It appears that this complex has two MLCT bright states, the lower one being weakly emissive or nonemissive depending on the solvent and temperature.

View Article and Find Full Text PDF

Our group recently reported the use of [(DPEPhos)(bcp)Cu]PF6 as a general copper-based photoredox catalyst which proved efficient to promote the activation of a broad variety of organic halides, including unactivated ones. These can then participate in various radical transformations such as reduction and cyclization reactions, as well as in the direct arylation of several (hetero)arenes. These transformations provide a straightforward access to a range of small molecules of interest in synthetic chemistry, as well as to biologically active natural products.

View Article and Find Full Text PDF

Ru(ii)-complexes with polyazaaromatic ligands can undergo direct electron transfer with guanine nucleobases on blue light excitation that results in DNA lesions with phototherapeutic potential. Here we use single molecule approaches to demonstrate DNA binding mode heterogeneity and evaluate how multivalent binding governs the photochemistry of [Ru(TAP)3]2+ (TAP = 1,4,5,8-tetraazaphenanthrene).

View Article and Find Full Text PDF

Metal complexes constitute an important class of DNA binders. In particular, a few ruthenium polyazaaromatic complexes are attractive as "light switches" because of their strong luminescence enhancement upon DNA binding. In this paper, a comprehensive study on the binding modes of several mononuclear and binuclear ruthenium complexes to human telomeric sequences, made of repeats of the d(TTAGGG) fragment is reported.

View Article and Find Full Text PDF

Organic transformations can broadly be classified into four categories including cationic, anionic, pericyclic and radical reactions. While the last category has been known for decades to provide remarkably efficient synthetic pathways, it has long been hampered by the need for toxic reagents, which considerably limited its impact on chemical synthesis. This situation has come to an end with the introduction of new concepts for the generation of radical species, photoredox catalysis - which simply relies on the use of a catalyst that can be activated upon visible light irradiation - certainly being the most efficient one.

View Article and Find Full Text PDF

Photoactive ruthenium-based complexes are actively studied for their biological applications as potential theragnostic agents against cancer. One major issue of these inorganic complexes is to penetrate inside cells in order to fulfil their function, either sensing the internal cell environment or exert a photocytotoxic activity. The use of lipophilic ligands allows the corresponding ruthenium complexes to passively diffuse inside cells but limits their structural and photophysical properties.

View Article and Find Full Text PDF

A broadly applicable copper catalyst for photoredox transformations of organic halides is reported. Upon visible light irradiation in the presence of catalytic amounts of [(DPEphos)(bcp)Cu]PF and an amine, a range of unactivated aryl and alkyl halides were shown to be smoothly activated through a rare Cu(I)/Cu(I)*/Cu(0) catalytic cycle. This complex efficiently catalyzes a series of radical processes, including reductions, cyclizations, and direct arylation of arenes.

View Article and Find Full Text PDF

Polyazaaromatic ruthenium(ii) complexes have been largely studied over the last decades, particularly in the scope of the biological applications, for the development of new diagnostic and phototherapeutic agents. In this context, Ru(ii) complexes able to react with biomolecules upon excitation are of great interest. Photo-oxidizing Ru(ii) complexes based on π-deficient ligands, such as bpz (2,2'-bypyrazine) and TAP (1,4,5,8-tetraazaphenathrene), were designed to allow a photo-induced electron transfer (PET) to take place in presence of biomolecules, thanks to their highly photo-oxidizing MLCT state.

View Article and Find Full Text PDF

The quenching of the excited state of [Ru(TAP)] (TAP = 1,4,5,8-tetraazaphenanthrene) by guanosine-5'-monophosphate (GMP), N-acetyltyrosine (N-Ac-Tyr), and hydroquinone (HQ) has been studied in aqueous solution over a wide range of pH values including, for the first time, strongly acidic media. This quenching by electron transfer was examined by steady-state H photochemically induced dynamic nuclear polarization (photo-CIDNP) as well as by more conventional techniques, among which are pulsed laser-induced transient absorption and emission experiments. A deeper knowledge of the photochemical behavior of [Ru(TAP)] has been gained thanks to the combined use of these two approaches, photo-CIDNP and electronic spectroscopies, highlighting their complementarity.

View Article and Find Full Text PDF

A series of Ru complexes exhibiting π-extended, acridine-based ancillary chelating heterocycles display high affinity and selectivity for DNA and RNA quadruplexes. The most promising candidates (3, 4) possess remarkable light-up luminophore properties (up to 330-fold luminescence enhancement upon interaction with quadruplexes), enabling them to discriminate quadruplexes from genomic DNA owing to a photochemical mechanism involving DNA protection against non-radiative decay (DAND), thus deviating from the other complexes of this series of ligands that exhibit an excited-state intramolecular proton transfer (ESIPT) that quenches their luminescence. The in vitro and preliminary in cellulo results shown here confirm the interest of this new family of fluorophores as invaluable molecular tools to detect G-quadruplexes in cells.

View Article and Find Full Text PDF

The preparation and characterization of three series of novel ruthenium(ii) complexes are reported, each series differing by the nature of the ancillary ligands (2,2'-bipyridine - bpy, 1,10-phenanthroline - phen or 1,4,5,8-tetraazaphenanthrene - TAP). The third ligand was either the heptacyclic heterocycle dipyrido[3,2-a:2',3'-c]quinolino[3,2-h]phenazine (dpqp) substituted at position 12 by an hydroxyl (oxo), 2,2-dimethoxyethylamine (DMEA) or halogeno (Cl or Br) substituent, or the octacyclic dipyrido[3,2-a:2',3'-c]pyrido[2,3,4-de]quinolino[3,2-h]phenazine (dppqp), prepared by a multi-step "chemistry on the complex" strategy from [RuL(oxo-dpqp)](PF). The three steps, halogenation, substitution by a dimethoxyethylamino group and cyclization in trifluoroacetic acid, were performed in reasonable to high yields depending on the nature of the ancillary ligands.

View Article and Find Full Text PDF

Ruthenium(II) polyazaaromatic complexes have gained interest in recent decades as biomolecular tools, especially in the development of new phototherapeutic agents. These light emissive Ru complexes based on π-deficient ligands were first designed to allow a photo-induced electron transfer (PET) with the guanine base in DNA since their (3)MLCT state is highly photo-oxidizing. Later the field of research was extended to proteins with the highlighting of a PET process with the tryptophan residue.

View Article and Find Full Text PDF

The covalent photoadduct (PA) between [Ru(TAP)3](2+) (TAP = 1,4,5,8-tetraazaphenanthrene) and guanosine monophosphate (GMP) opened the way to interesting photobiological applications. In this context, the PA's capability upon illumination to give rise to the addition of a second guanine base is especially interesting. The origins of these intriguing properties are for the first time thoroughly investigated by an experimental and theoretical approach.

View Article and Find Full Text PDF

In this review, we first discuss the photophysics reported in the literature for mononuclear ruthenium complexes bearing ligands with extended aromaticity such as dipyrido[3,2-a:2',3'-c]phenazine (DPPZ), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]-phenazine (TPPHZ),  tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]acridine (TPAC), 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene (PHEHAT) 9,11,20,22-tetraaza- tetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (TATPP), etc. Photophysical properties of binuclear and polynuclear complexes based on these extended ligands are then reported. We finally develop the use of binuclear complexes with extended π-systems for applications such as photocatalysis.

View Article and Find Full Text PDF

The effects of the nonprotonated and protonated calix[6]crypturea 1/1(•)H(+) on the PF6(-) and Cl(-) salts of a luminescent Ru-TAP complex (TAP = 1,4,5,8-tetraazaphenanthrene) were investigated. Thus, the phototriggered basic properties of this complex were examined with 1(•)H(+) in acetonitrile (MeCN) and butyronitrile (BuCN). The Ru excited complex was shown to be able to extract a proton from the protonated calixarene, accompanied by a luminescence quenching in both solvents.

View Article and Find Full Text PDF

An efficient oxidation reaction of various electron-poor quinoxaline-core-containing compounds, such as quinoxalines, 1,4,5,8-tetraazaphenanthrenes, and 1,4,5,8,9,12-hexaazatriphenylene, using [bis(trifluoroacetoxy)iodo]benzene is reported. These compounds are converted into the corresponding quinoxalinediones in good to high yields at room temperature using an acetonitrile/water solvent mixture. This unprecedented reaction should enable the synthesis of a wide variety of compounds useful in several fields of chemistry.

View Article and Find Full Text PDF

The grafting of photoreactive and photooxidizing Ru(II)(TAP) (TAP = 1,4,5,8-tetraazaphenanthrene) complexes on calix[4 or 6]arene molecular platforms is reported. Thus, either [Ru(TAP)2(phen)](2+) (phen = 1,10-phenanthroline) or [Ru(TAP)2(pytz)](2+) [pytz = 2-(1,2,3-triazol-4-yl)pyridine] complexes are anchored to the calixarenes. The data in electrochemistry, combined with those in emission under steady state and pulsed illumination and the determination of the associated photophysical rate constants, indicate the presence of intramolecular luminescence quenching by the phenol moieties of calixarene.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmmlh6tou1u11ofvjnh7be5phmpa4qqos): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once