Publications by authors named "Cecile Monteux"

Polymer association at liquid-liquid interfaces is a promising way to spontaneously obtain soft self-healing membranes. In the case of reversible bonding between two polymers, the macromolecules are mobile everywhere within the membrane and they can be absorbed into it at both boundaries due to binding to macromolecules of the other type. In this work, we develop the theoretical model of membrane growth based on these assumptions.

View Article and Find Full Text PDF

We explore the effect of poly(ethylene glycol) (PEG) molar mass on the intrinsic permeability and structural characteristics of poly(ethylene glycol) diacrylate PEGDA/PEG composite hydrogel membranes. We observe that by varying the PEG content and molar mass, we can finely adjust the water intrinsic permeability by several orders of magnitude. Notably, we show the existence of maximum water intrinsic permeability, already identified in a previous study to be located at the critical overlap concentration * of PEG chains, for the highest PEG molar mass studied.

View Article and Find Full Text PDF

For drug delivery systems, the mechanical properties of drug carriers are suspected to play a crucial role in the delivery process. However, there is a lack of reliable methods available to measure the mechanical properties of drug carriers, which hampers the establishment of a link between delivery efficiency and the mechanical properties of carriers. Lipid nanoparticles (LNPs) are advanced systems for delivering nucleic acids to target cell populations for vaccination purposes (mRNA) or the development of new drugs.

View Article and Find Full Text PDF

Hydrogels are promising systems for separation applications due to their structural characteristics (i.e., hydrophilicity and porosity).

View Article and Find Full Text PDF

Hypothesis: Aqueous foams are expected to constitute exquisite particularly suitable reactive medium for the oxidation of metals, since the reactant H can be supplied through the continuous liquid phase, while the reactant O can be transported through the gas bubbles.

Experiments: To test this hypothesis, we investigated the oxidation of a metallic copper cylinder immersed in an aqueous foam. To study the relation between the transport of these reactants and the kinetics of the chemical reaction we use a forced drainage setup which enables us to control both the advection velocity of the H ions through the foam and the foam liquid fraction.

View Article and Find Full Text PDF

Foams can resist destabilizaton in ways that appear similar on a macroscopic scale, but the microscopic origins of the stability and the loss thereof can be quite diverse. Here, we compare both the macroscopic drainage and ultimate collapse of aqueous foams stabilized by either a partially hydrolyzed poly(vinyl alcohol) (PVA) or a nonionic low-molecular-weight surfactant (BrijO10) with the dynamics of individual thin films at the microscale. From this comparison, we gain significant insight regarding the effect of both surface stresses and intermolecular forces on macroscopic foam stability.

View Article and Find Full Text PDF

Soft or rigid particles, suspended in a liquid melt, interact with an advancing solidification front in various industrial and natural processes, such as fabrication of particle-reinforced-composites, growth of crystals, cryopreservation, frost heave, and growth of sea ice. The particle dynamics relative to the front determine the microstructure as well as the functional properties of the solidified material. Previous studies have extensively investigated the interaction of foreign objects with a moving solid-liquid interface in pure melts while in most real-life systems, solutes or surface active impurities are almost always present.

View Article and Find Full Text PDF

Complexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process, but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA (polypropylene oxide-polymetacrylic acid) membranes at a flat liquid-liquid interface.

View Article and Find Full Text PDF

The interaction of objects suspended in a liquid melt with an advancing solidification front is of special interest in nature and engineering sciences. The front can either engulf the object into the growing crystal or repel it. Therefore, the object-front confrontation can have a strong influence on the microstructure and mechanical or functional properties of the solidified material.

View Article and Find Full Text PDF

Flexible dielectrics that harvest mechanical energy via electrostatic effects are excellent candidates as power sources for wearable electronics or autonomous sensors. The integration of a soft dielectric composite (polydimethylsiloxane PDMS-carbon black CB) into two mechanical energy harvesters is here presented. Both are based on a similar cantilever beam but work on different harvesting principles: variable capacitor and triboelectricity.

View Article and Find Full Text PDF

Encapsulation of chemicals using polymer membranes enables control of their transport and delivery for applications such as agrochemistry or detergency. To rationalize the design of polymer capsules, it is necessary to understand how the membranes' mechanical properties control the transport and release of the cargo. In this article, we use microfluidics to produce model polymer capsules and study in situ their behavior in controlled divergent flows.

View Article and Find Full Text PDF

If confocal microscopy is an ubiquitous tool in life science, its applications in chemistry and materials science are still, in comparison, very limited. Of particular interest in these domains is the use of confocal microscopy to investigate temperature-dependent phenomena such as self-assembly, diffusio- or thermophoresis, or crystal growth. Several hurdles must be solved to develop a temperature-controlled stage for laser scanning confocal microscopy, in particular regarding the influence of an elevated temperature gradient close to the microscope objective, which most people try very hard to avoid.

View Article and Find Full Text PDF

Using fluorescence confocal microscopy we study the adsorption of single latex microparticles at a water-water interface between demixing aqueous solutions of polymers, generally known as a water-in-water emulsion. Similar microparticles at the interface between molecular liquids have exhibited an extremely slow relaxation preventing the observation of expected equilibrium states. This phenomenon has been attributed to "long-lived" metastable states caused by significant energy barriers ΔF∼γA_{d}≫k_{B}T induced by high interfacial tension (γ∼10^{-2}  N/m) and nanoscale surface defects with characteristic areas A_{d}≃10-30  nm^{2}.

View Article and Find Full Text PDF

The interaction of objects with a moving solidification front is a common feature of many industrial and natural processes such as metal processing, the growth of single crystals, the cryopreservation of cells, or the formation of sea ice. Interaction of solidification fronts with objects leads to different outcomes, from total rejection of the objects to their complete engulfment. We imaged the freezing of emulsions in five dimensions (space, time, and solute concentration) with confocal microscopy.

View Article and Find Full Text PDF

Foams made with polymer hydrogels can be used in a variety of applications, such as scaffolds for biomedical applications or decontamination processes. However, from a practical point of view, it is difficult to introduce bubbles into viscous or viscoelastic fluids and to produce large volumes of hydrogel foams. In the present article, we investigate the foaming process of poly(vinyl alcohol) (PVA)/borax transient hydrogels, where PVA chains reversibly bind to borax molecules.

View Article and Find Full Text PDF

Biocompatible microencapsulation is of widespread interest for the targeted delivery of active species in fields such as pharmaceuticals, cosmetics and agro-chemistry. Capsules obtained by the self-assembly of polymers at interfaces enable the combination of responsiveness to stimuli, biocompatibility and scaled up production. Here, we present a one-step method to produce in situ membranes at oil-water interfaces, based on the hydrogen bond complexation of polymers between H-bond acceptor and donor in the oil and aqueous phases, respectively.

View Article and Find Full Text PDF

Using an emulsion road and optimizing the dispersion process, we prepare polymer carbone nanotubes (CNT) and polymer reduced graphene oxide (rGO) composites. The introduction of conductive nanoparticles into polymer matrices modifies the electronic properties of the material. We show that these materials exhibit giant electrostriction coefficients in the intermediate filler concentration (below 1 wt %).

View Article and Find Full Text PDF

Molecular interactions in thin liquid films, such as the disjoining pressure, are involved in interfacial phenomena such as emulsion and foam stabilization. In this article we show that through light stimulation we can control remotely the disjoining pressure in a thin liquid film stabilized by a photosurfactant. We stabilize a horizontal thin liquid film using a cationic photosurfactant, AzoTAB, bearing an azobenzene moiety on the hydrophobic tail which can switch from a trans to a cis conformation upon light stimulation.

View Article and Find Full Text PDF

We study the 2D rheological properties of hydrogen-bonded polymer multilayers assembled directly at dodecane-water and air-water interfaces using pendant drop/bubble dilation and the double-wall ring method for interfacial shear. We use poly(vinylpyrrolidone) (PVP) as a proton acceptor and a series of polyacrylic acids as proton donors. The PAA series of chains with varying hydrophobicity was fashioned from poly(acrylic acid), (PAA), polymethacrylic acid (PMAA), and a homemade hydrophobically modified polymer.

View Article and Find Full Text PDF

We probe the drainage and imbibition dynamics of foams in which the continuous aqueous phase is a transient gel-like network. To produce these foams, we provide a new method - a PVA (polyvinyl alcohol) solution is first foamed and then a cross-linker, Borax, is added, which binds reversibly to the PVA chains. The resulting foams are ultra-stable-over a month.

View Article and Find Full Text PDF

We probe the mechanical shear and compression properties of hydrogen-bonded polymer multilayers directly assembled at the oil-water interface using interfacial rheology techniques. We show that the polymer multilayers behave mechanically like a transient network, with elastic moduli that can be varied over 2 orders of magnitude by controlling the type and strength of physical interactions involved in the multilayers, which are controlled by the pH and the hydrophobicity of the polymer. Indeed, the interplay of hydrogen and hydrophobic interactions enables one to obtain a tighter and stronger network at the interface.

View Article and Find Full Text PDF

We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex.

View Article and Find Full Text PDF

In this article, we study the drying kinetics of a sessile droplet containing latex particles. We find that a depletion film is left at the edge of the drops, whose width is controlled by two geometric parameters, the contact angle and the diameter of the particles. We show that this effect can be used to sort colloidal mixtures because nanometric colloids always segregate at the edge of the drop, whereas micrometric colloids are blocked further away from the edge.

View Article and Find Full Text PDF

Highly monodisperse poly(N-isopropylacrylamide), PNiPAM, microgels were prepared by the conventional radical polymerization of NiPAM in the presence of dimethylamino ethyl methacrylate (DMAEMA) monomers at various concentrations. The effect of DMAEMA on the polymerization of PNiPAM microgels was examined at constant initiator (V50) and cross-linker (MBA) concentrations. The presence of DMAEMA in the synthesis batch allows for the preparation of PNiPAM microgels with controlled size and a narrow size distribution.

View Article and Find Full Text PDF

We found that the drying process of the droplet of water-poly(N,N-dimethylacrylamide) (PDMA) solution on a glass substrate shows a somewhat unusual behavior. In this system, the contact line starts to recede at an early stage of drying, and as it recedes, it leaves a macroscopic polymer film behind. The resulting film has a volcano-like profile, but the peak is not located at the edge of the film but in the middle of the film.

View Article and Find Full Text PDF