Inhaled nitric oxide (INO) improves ventilation-perfusion matching and alleviates pulmonary hypertension in patients with acute respiratory distress syndrome. However, outcome has not yet been shown to improve, and nonresponse is common. A better understanding of the mechanisms by which INO acts may guide in improving treatment with INO in patients with severe respiratory failure.
View Article and Find Full Text PDFPost-cardiac arrest myocardial dysfunction is a major cause of mortality in patients receiving successful cardiopulmonary resuscitation (CPR). Mild therapeutic hypothermia (MTH) is the recommended treatment after resuscitation from cardiac arrest (CA) and is known to exert neuroprotective effects and improve short-term survival. Yet its cytoprotective mechanisms are not fully understood.
View Article and Find Full Text PDFWell-differentiated small intestinal neuroendocrine tumors are rare malignancies. They arise from enterochromaffin cells and very little is known about differential microRNA (miRNA) expression. The aim of this study was to identify the miRNA profile of well-differentiated small intestinal neuroendocrine tumors, which may have a critical role in tumor development, progression and potentially develop miRNAs as novel clinical biomarkers.
View Article and Find Full Text PDFOctreotide is a widely used synthetic somatostatin analogue that significantly improves the management of neuroendocrine tumours (NETs). Octreotide acts through somatostatin receptors (SSTRs). However, the molecular mechanisms leading to successful disease control or symptom management, especially when SSTRs levels are low, are largely unknown.
View Article and Find Full Text PDFOnly approximately 10% of patients encountering a cardiac arrest (CA) and subsequent cardiopulmonary resuscitation survive to a meaningful life. One of the most important causes for this low survival rate is the ischemia-reperfusion injury that hits the brain. This review summarizes some of the more important mechanisms causing cerebral injury.
View Article and Find Full Text PDFObjectives: To investigate the effects of cardiac arrest and the reperfusion syndrome on blood-brain barrier permeability and evaluate whether methylene blue counteracts blood-brain barrier disruption in a pig model of controlled cardiopulmonary resuscitation.
Design: Randomized, prospective, laboratory animal study.
Setting: University-affiliated research laboratory.
Background: Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest.
View Article and Find Full Text PDFAdipogenesis is spatiotemporally coupled to angiogenesis throughout adult life, and the interplay between these two processes is communicated by multiple factors. Here we show that in a transgenic mouse model, increased expression of forkhead box C2 (FOXC2) in the adipose tissue affects angiogenesis, vascular patterning, and functions. White and brown adipose tissues contain a considerably high density of microvessels appearing as vascular plexuses, which show redistribution of vascular smooth muscle cells and pericytes.
View Article and Find Full Text PDF