Publications by authors named "Cecile Lecampion"

Ribosome-associated GTPases are conserved enzymes that participate in ribosome biogenesis and ribosome function. In bacteria, recent studies have identified HflX as a ribosome-associated GTPase that is involved in both ribosome biogenesis and recycling under stress conditions. Plants possess a chloroplastic HflX homolog, but its function remains unknown.

View Article and Find Full Text PDF

Kinases are major components of cellular signaling pathways, regulating key cellular activities through phosphorylation. Kinase inhibitors are efficient tools for studying kinase targets and functions, however assessing their kinase specificity in vivo is essential. The identification of resistant kinase mutants has been proposed to be the most convincing approach to achieve this goal.

View Article and Find Full Text PDF

Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance.

View Article and Find Full Text PDF

The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions.

View Article and Find Full Text PDF

Guanosine pentaphosphate and tetraphosphate (together referred to as ppGpp) are hyperphosphorylated nucleotides found in bacteria and the chloroplasts of plants and algae. In plants and algae artificial ppGpp accumulation can inhibit chloroplast gene expression, and influence photosynthesis, nutrient remobilization, growth, and immunity. However, it is so far unknown whether ppGpp is required for abiotic stress acclimation in plants.

View Article and Find Full Text PDF

Argonaute (AGO) proteins play a key role in RNA silencing mechanisms. RNA silencing affects both RNA degradation and translation. The characterization of translation-associated RNA silencing mechanisms and components often requires polysome isolation and analysis.

View Article and Find Full Text PDF

Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues.

View Article and Find Full Text PDF

cis-natural antisense transcripts (cis-NATs) are widespread in plants and are often associated with downregulation of their associated sense genes. We found that a cis-NAT positively regulates the level of a protein critical for phosphate homeostasis in rice (Oryza sativa). PHOSPHATE1;2 (PHO1;2), a gene involved in phosphate loading into the xylem in rice, and its associated cis-NATPHO1;2 are both controlled by promoters active in the vascular cylinder of roots and leaves.

View Article and Find Full Text PDF

Potyvirus are one of the largest groups of phytopathogenic virus and are responsible for significant agronomic loss. Host proteins belonging to the eukaryotic translation initiation complex, and particularly eIF4E (eukaryotic Initiation Factor 4E, which binds to the mRNA cap), play an important role in the success of a productive potyvirus infection. Plant eIF4E interacts with the viral VPg protein, which binds to the 5' end of the viral genome.

View Article and Find Full Text PDF

The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo1(1) and mo1(2) against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo1(1) or mo1(2) varieties.

View Article and Find Full Text PDF

Background: The eukaryotic TOR pathway controls translation, growth and the cell cycle in response to environmental signals such as nutrients or growth-stimulating factors. The TOR protein kinase can be inactivated by the antibiotic rapamycin following the formation of a ternary complex between TOR, rapamycin and FKBP12 proteins. The TOR protein is also found in higher plants despite the fact that they are rapamycin insensitive.

View Article and Find Full Text PDF