Publications by authors named "Cecile Lara"

Amyloid fibrils are implicated in over 20 neurodegenerative diseases. The mechanisms of fibril structuring and formation are not only of medical and biological importance but are also relevant for material science and nanotechnologies due to the unique structural and physical properties of amyloids. We previously found that hen egg white lysozyme, homologous to the disease-related human lysozyme, can form left-handed giant ribbons, closing into nanotubes.

View Article and Find Full Text PDF

We report lysozyme self-assembly into nanotubes, under the effect of hydrolysis at pH 2 and 90 °C. We resolve the final steps of the fibrillation pathway, entailing the closure of multi-stranded helical ribbons into nanotubes, and we provide evidence of β-sheet arrangement within the nanotubes, demonstrating amyloid-like aggregation. Addition of chloroauric acid to the self-assembled structures can lead to generation of either gold single crystal nanoplatelets or gold nanoparticles (when a reducing agent is added) decorating the nanotube and ribbon surfaces.

View Article and Find Full Text PDF

We show for the first time the possibility of using networks of amyloid fibrils, adsorbed to solid supports and with plasma polymer coatings, for the fabrication of chemically homogeneous surfaces with well-defined nanoscale surface features reminiscent of the topography of the extracellular matrix. The robust nature of the fibrils allows them to withstand the plasma polymer deposition conditions used with no obvious deleterious effect, thus enabling the underlying fibril topography to be replicated at the polymer surface. This effect was seen despite the polymer coating thickness being an order of magnitude greater than the fibril network.

View Article and Find Full Text PDF

We study the fibrillation pathway of ovalbumin protein and report the simultaneous formation of several types of fibrils, with clear structural and physical differences. We compare the fibrillation mechanisms at low pH with and without salt, and follow the kinetics of fibrils growth by atomic force microscopy (AFM), static and dynamic light scattering (SLS, DLS), and small-angle X-ray scattering (SAXS). We show that, among the morphologies identified, long semiflexible amyloid fibrils (type I), with persistence length Lp∼3 μm, Young's modulus E∼2.

View Article and Find Full Text PDF

We report the investigation of the mechanical properties of different types of amyloid fibrils by the peak force quantitative nanomechanical (PF-QNM) technique. We demonstrate that this technique correctly measures the Young's modulus independent of the polymorphic state and the cross-sectional structural details of the fibrils, and we show that values for amyloid fibrils assembled from heptapeptides, α-synuclein, Aβ(1-42), insulin, β-lactoglobulin, lysozyme, ovalbumin, Tau protein and bovine serum albumin all fall in the range of 2-4 GPa.

View Article and Find Full Text PDF

We combine atomic force microscopy single-molecule analysis with polymer physics concepts to study molecular conformations of lysozyme amyloid fibrils. We resolve a wavy structure of the fibrils in which the scaling behavior varies at multiple length scales. Bond and pair correlation functions, end-to-end distribution, and wormlike chain model identify three characteristic length scales.

View Article and Find Full Text PDF

We report a rationale for the formation of amyloid fibrils from globular proteins, and we infer about its possible generality by showing the formation of giant multistranded twisted and helical ribbons from both lysozyme and β-lactoglobulin. We follow the kinetics of the fibrillation under the same conditions of temperature (90 °C) and incubation time (0-30 h) for both proteins, and we assess the structural changes during fibrillation by single-molecule atomic force microscopy (AFM), circular dichroism (CD), and SDS-PAGE. With incubation time, the width of a multistranded fibril increases up to an unprecedented size, with a lateral assembly of as many as 17 protofilaments (173 nm width).

View Article and Find Full Text PDF