Publications by authors named "Cecile Hourton-Cabassa"

Accumulation of proline in higher plants is an indication of disturbed physiological condition, triggered by biotic or abiotic stress condition. Free proline content can increase upon exposure of plants to drought, salinity, cold, heavy metals, or certain pathogens. Determination of free proline levels is a useful assay to monitor physiological status and to assess stress tolerance of higher plants.

View Article and Find Full Text PDF

We investigated the role of membrane fatty acids in basal proton leaks and uncoupling protein (UCP)-dependent proton conductance in Arabidopsis mitochondria. Using wild-type cells, cold-sensitive fad2 mutant cells, deficient in omega-6-oleate desaturase, and cold-tolerant FAD3(+) transformant cells, overexpressing omega-3-linoleate desaturase, we showed that basal proton leak in the non-phosphorylating state was dependent on lipid composition. The extent of membrane proton leak was drastically reduced in the fad2 mutant, containing low amounts of polyunsaturated fatty acids.

View Article and Find Full Text PDF

To investigate how the fatty acid composition of membrane lipids influences cell growth and mitochondrial respiration, in particular the expression and capacity of alternative oxidase (AOX), under cold stress, we used the Arabidopsis thaliana fad2 knockout and FAD3+ -overexpressing cultured cells lines affected in extrachloroplastic fatty acid desaturation activities. At 22 degrees C, fad2 mitochondria exhibited a low polyunsaturated fatty acid content and low protein to lipid ratio, while mitochondria from FAD3+ were enriched in linolenic acid and in total membrane protein. As a consequence, both mutants showed a higher membrane microviscosity than the wild type.

View Article and Find Full Text PDF

Uncoupling proteins (UCPs) form a subfamily within the mitochondrial carrier protein family, which catalyze a free fatty acid-mediated proton recycling and can modulate the tightness of coupling between mitochondrial respiration and ATP synthesis. As in mammalian tissues, UCPs are rather ubiquitous in the plant kingdom and widespread in plant tissues in which they could have various physiological roles, such as heat production or protection against free oxygen radicals. The simultaneous occurrence in plant mitochondria of two putative energy-dissipating systems, namely UCP which dissipates the proton motive force, and alternative oxidase (AOX) which dissipates the redox potential, raises the question of their functional interactions.

View Article and Find Full Text PDF

We characterized the uncoupling activity of the plant uncoupling protein from Solanum tuberosum (StUCP) using mitochondria from intact potato tubers or from yeast (Saccharomyces cerevisiae) expressing the StUCP gene. Compared with mitochondria from transfected yeast, StUCP is present at very low levels in intact potato mitochondrial membranes (at least thirty times lower) as shown by immunodetection with anti-UCP1 antibodies. Under conditions that ruled out undesirable effects of nucleotides and free fatty acids on uncoupling activity measurement in plant mitochondria, the linoleic acid-induced depolarization in potato mitochondria was insensitive to the nucleotides ATP, GTP, or GDP.

View Article and Find Full Text PDF