The CTNNB1 gene, encoding β-catenin, is frequently mutated in hepatocellular carcinoma (HCC, ∼30%) and in hepatoblastoma (HB, >80%), in which DLK1/DIO3 locus induction is correlated with CTNNB1 mutations. Here, we aim to decipher how sustained β-catenin activation regulates DLK1/DIO3 locus expression and the role this locus plays in HB and HCC development in mouse models deleted for Apc (Apc) or Ctnnb1-exon 3 (β-catenin) and in human CTNNB1-mutated hepatic cancer cells. We identified an enhancer site bound by TCF-4/β-catenin complexes in an open conformation upon sustained β-catenin activation (DLK1-Wnt responsive element [WRE]) and increasing DLK1/DIO3 locus transcription in β-catenin-mutated human HB and mouse models.
View Article and Find Full Text PDFBackground & Aims: One-third of hepatocellular carcinomas (HCCs) harbor mutations activating the β-catenin pathway, predominantly via mutations in the CTNNB1 gene itself. Mouse models of Apc loss-of-function are widely used to mimic β-catenin-dependent tumorigenesis. Given the low prevalence of APC mutations in human HCCs, we aimed to generate liver tumors through CTNNB1 exon 3 deletion (βcat).
View Article and Find Full Text PDFErythropoietin (EPO) is a key regulator of erythropoiesis. The embryonic liver is the main site of erythropoietin synthesis, after which the kidney takes over. The adult liver retains the ability to express EPO, and we discovered here new players of this transcription, distinct from the classical hypoxia-inducible factor pathway.
View Article and Find Full Text PDFBackground & Aims: In one-third of hepatocellular carcinomas (HCCs), cancer cells have mutations that activate β-catenin pathway. These cells have alterations in glutamine, bile, and lipid metabolism. We investigated whether positron emission tomography (PET) imaging allows identification of altered metabolic pathways that might be targeted therapeutically.
View Article and Find Full Text PDFBackground & Aims: Loss of hepatocyte nuclear factor-4α (HNF4α), a critical factor driving liver development and differentiation, is frequently associated with hepatocellular carcinoma (HCC). Our recent data revealed that HNF4α level was decreased in mouse and human HCCs with activated β-catenin signalling. In addition, increasing HNF4α level by miR-34a inhibition slowed tumour progression of β-catenin-activated HCC in mice.
View Article and Find Full Text PDFBeta-catenin is known to play stage- and cell-specific functions during liver development. However, its role in development of bile ducts has not yet been addressed. Here we used stage-specific in vivo gain- and loss-of-function approaches, as well as lineage tracing experiments in the mouse, to first demonstrate that β-catenin is dispensable for differentiation of liver precursor cells (hepatoblasts) to cholangiocyte precursors.
View Article and Find Full Text PDFObjective: Hepatocellular carcinoma (HCC) is the most prevalent primary tumour of the liver. About a third of these tumours presents activating mutations of the β-catenin gene. The molecular pathogenesis of HCC has been elucidated, but mortality remains high, and new therapeutic approaches, including treatments based on microRNAs, are required.
View Article and Find Full Text PDFUnlabelled: β-catenin signaling can be both a physiological and oncogenic pathway in the liver. It controls compartmentalized gene expression, allowing the liver to ensure its essential metabolic function. It is activated by mutations in 20%-40% of hepatocellular carcinomas (HCCs) with specific metabolic features.
View Article and Find Full Text PDFBackground & Aims: β-Catenin is an oncogene frequently mutated in hepatocellular carcinoma. In this study, we investigated target genes of β-catenin signaling in hepatocyte proliferation.
Methods: We studied transgenic mice displaying either inactivation or activation of the β-catenin pathway, focusing on analysis of liver proliferation due to aberrant β-catenin activation, and on the regeneration process during which β-catenin signaling is transiently activated.
The Wnt/beta-catenin pathway is a key developmental pathway for which alterations have been described in various human cancers. The aberrant activation of this pathway is a major event in human hepatocellular carcinoma. Several laboratories have shown that the Wnt/beta-catenin pathway plays an essential role in all phases of liver development and maturation, and is required for the metabolic function of this organ.
View Article and Find Full Text PDFThe H19 locus belongs to a cluster of imprinted genes that is linked to the human Beckwith-Wiedemann syndrome. The expression of H19 and its closely associated IGF2 gene is frequently deregulated in some human tumors, such as Wilms' tumors. In these cases, biallelic IGF2 expression and lack of expression of H19 are associated with hypermethylation of the imprinting center of this locus.
View Article and Find Full Text PDFOrnithine aminotransferase (OAT) is a reversible enzyme expressed mainly in the liver, kidney and intestine. OAT controls the interconversion of ornithine into glutamate semi-aldehyde, and is therefore involved in the metabolism of arginine and glutamine which play a major role in N homeostasis. We hypothesised that OAT could be a limiting step in glutamine-arginine interconversion.
View Article and Find Full Text PDFUnlabelled: During hepatogenesis, after the liver has budded out of the endoderm, the hepatoblasts quickly expand and differentiate into either hepatocytes or biliary cells, the latter of which arise only within the ductal plate surrounding the portal vein. Because the Wnt/beta-catenin pathway is involved in liver homeostasis and regeneration and in liver carcinogenesis, we investigated here a role for Wnt/beta-catenin signaling in the embryonic liver. A cyclization recombination (Cre)/locus of X-over P1 (loxP) strategy was chosen to perform adenomatous polyposis coli (Apc) invalidation in order to activate ectopic beta-catenin signaling in hepatoblasts; an appropriate transgenic model expressing the Cre recombinase was used.
View Article and Find Full Text PDFThe molecular mechanisms by which liver genes are differentially expressed along a portocentral axis, allowing for metabolic zonation, are poorly understood. We provide here compelling evidence that the Wnt/beta-catenin pathway plays a key role in liver zonation. First, we show the complementary localization of activated beta-catenin in the perivenous area and the negative regulator Apc in periportal hepatocytes.
View Article and Find Full Text PDFWe analyzed the expression profiles of intestinal adenomas from a new murine familial adenomatous polyposis model (Apc(delta14/+)) using suppression subtractive hybridization to identify novel diagnostic markers of colorectal carcinogenesis. We identified 18 candidate genes having increased expression levels in the adenoma. Subsequent Northern blotting, real-time reverse transcription-PCR, and in situ hybridization analysis confirmed their induction in beta-catenin-activated epithelial cells of murine adenomas.
View Article and Find Full Text PDFUsing several techniques, we have assessed morphological characteristics of a malignant thymic tumour in SV12 transgenic (Tg) mice expressing SV40 T and t antigens under control of an L-PK promoter. We describe the development of a carcinoma originating from thymic hyperplasia and followed by the formation of a benign tumour composed chiefly of medullary epithelial cells expressing the transgene and of lymphocytes, a pathology very rarely reported in mice. Our study of the SV12 Tg mice represents the first description of a model of a pure malignant thymic tumour associated with extensive angiogenesis maintained in numerous descendants.
View Article and Find Full Text PDFChicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) has been implicated in the control of blood glucose by its potent effect on expression and signaling of various nuclear receptors. To understand the role of COUP-TFII in glucose homeostasis, conditional COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of rat insulin II gene promoter, resulting in deletion of COUP-TFII in pancreatic beta-cells. Homozygous mutants died before birth for yet undetermined reasons.
View Article and Find Full Text PDFLoss of Apc appears to be one of the major events initiating colorectal cancer. However, the first events responsible for this initiation process are not well defined and the ways in which different epithelial cell types respond to Apc loss are unknown. We used a conditional gene-ablation approach in transgenic mice expressing tamoxifen-dependent Cre recombinase all along the crypt-villus axis to analyze the immediate effects of Apc loss in the small intestinal epithelium, both in the stem-cell compartment and in postmitotic epithelial cells.
View Article and Find Full Text PDFMurine models of familial adenomatous polyposis harbor a germinal heterozygous mutation on Apc tumor suppressor gene. They are valuable tools for studying intestinal carcinogenesis, as most human sporadic cancers contain inactivating mutations of APC. However, Apc(+/-) mice, such as the well-characterized Apc(Min/+) model, develop cancers principally in the small intestine, while humans develop mainly colorectal cancers.
View Article and Find Full Text PDFTo clarify molecular mechanisms underlying liver carcinogenesis induced by aberrant activation of Wnt pathway, we isolated the target genes of beta-catenin from mice exhibiting constitutive activated beta-catenin in the liver. Adenovirus-mediated expression of oncogenic beta-catenin was used to isolate early targets of beta-catenin in the liver. Suppression subtractive hybridization was used to identify the leukocyte cell-derived chemotaxin 2 (LECT2) gene as a direct target of beta-catenin.
View Article and Find Full Text PDFBone marrow progenitors migrate to the thymus, where they proliferate and differentiate into immunologically competent T cells. In this report we show that mice transgenic for SV40 T and t antigens under the control of the L-pyruvate kinase promoter develop, in a first step, thymic hyperplasia of both thymocytes and epithelial cells. Morphological studies (histology, immunohistolabeling and electron microscopy) revealed modifications of the thymic microenvironment and gradual expansion of medullary epithelial cells in 1 month-old mice, taking over the cortical region.
View Article and Find Full Text PDF