Oxylipins are potent lipid mediators with increasing interest in clinical research. They are usually measured in systemic circulation and can provide a wealth of information regarding key biological processes such as inflammation, vascular tone, or blood coagulation. Although procedures still require harmonization to generate comparable oxylipin datasets, performing comprehensive profiling of circulating oxylipins in large studies is feasible and no longer restricted by technical barriers.
View Article and Find Full Text PDFIntroduction: Oxylipins are mediators of oxidative stress. To characterize the underlying inflammatory processes and phenotype effect of iron metabolism disorders, we investigated the oxylipin profile in hereditary hemochromatosis (HH) and dysmetabolic iron overload syndrome (DIOS) patients.
Methods: An LC-MS/MS-based method was performed to quantify plasma oxylipins in 20 HH and 20 DIOS patients in fasting conditions and 3 h after an iron-rich meal in HH patients.
Oxylipins are major immunomodulating mediators, yet studies of inflammation focus mainly on cytokines. Here, using a standardized whole-blood stimulation system, we characterized the oxylipin-driven inflammatory responses to various stimuli and their relationships with cytokine responses. We performed a pilot study in 25 healthy individuals using 6 different stimuli: 2 bacterial stimuli (LPS and live BCG), 2 viral stimuli (vaccine-grade poly I:C and live H1N1 attenuated influenza), an enterotoxin superantigen and a Null control.
View Article and Find Full Text PDFMetabolic syndrome (MetS) is a complex condition encompassing a constellation of cardiometabolic abnormalities. Oxylipins are a superfamily of lipid mediators regulating many cardiometabolic functions. Plasma oxylipin signature could provide a new clinical tool to enhance the phenotyping of MetS pathophysiology.
View Article and Find Full Text PDFIntroduction: Although epidemiological studies associate the consumption of sugary beverages with adverse health effects, human experimental studies have demonstrated substantially different metabolic responses when 100% fruit juices are compared with artificial beverages. Fruit juices do not just provide sugars and associated calories, but they are also rich in bioactive compounds. Flavanones are bioactives specifically and abundantly found in citrus foods, with hesperidin as the major representative in sweet oranges.
View Article and Find Full Text PDFAims: Dysmetabolic iron overload syndrome (DIOS) is common but the clinical relevance of iron overload is not understood. Macrophages are central cells in iron homeostasis and inflammation. We hypothesized that iron overload in DIOS could affect the phenotype of monocytes and impair macrophage gene expression.
View Article and Find Full Text PDFBackground & Aims: Type I hereditary hemochromatosis (HH) and dysmetabolic iron overload syndrome (DIOS) are the two most prevalent iron overload diseases. Although many food components, particularly polyphenols, reduce iron bioavailability, there is no clinically validated nutritional strategy to reduce food-iron absorption in patients with these diseases. We aimed to determine whether supplementation with 100 mg of procyanidins during a meal reduces dietary iron absorption in patients with HH or DIOS.
View Article and Find Full Text PDFCalorie-dense obesogenic diet (OBD) is a prime risk factor for cardiovascular disease in aging. However, increasing age coupled with changes in the diet can affect the interaction of intestinal microbiota influencing the immune system, which can lead to chronic inflammation. How age and calorie-enriched OBD interact with microbial flora and impact leukocyte profiling is currently under investigated.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
November 2017
Omega 3 polyunsaturated fatty acids have been reported to confer beneficial health effects notably in the field of cardiovascular and inflammatory diseases. The current knowledge suggests a significant portion of the effects of omega 3 polyunsaturated fatty acids are mediated by their oxygenated metabolites. This review attempts to cover the current literature about the contribution of specific omega 3 oxygenated metabolites, namely omega 3 isoprostanoids, which are produced through free-radical mediated oxidation.
View Article and Find Full Text PDFFree Radic Biol Med
February 2017
Whereas the anti-inflammatory properties and mechanisms of action of long chain ω3 PUFAs have been abundantly investigated, research gaps remain regarding the respective contribution and mechanisms of action of their oxygenated metabolites collectively known as oxylipins. We conducted a dose-dependent and comparative study in human primary macrophages aiming to compare the anti-inflammatory activity of two types of DHA-derived oxylipins including the well-described protectins (NPD1 and PDX), formed through lipoxygenase pathway and the neuroprostanes (14-A- and 4-F-NeuroP) formed through free-radical mediated oxygenation and expected to be new anti-inflammatory mediators. Considering the potential ability of these DHA-derived oxylipins to bind PPARs and knowing the central role of these transcription factors in the regulation of macrophage inflammatory response, we performed transactivation assays to compare the ability of protectins and neuroprostanes to activate PPARs.
View Article and Find Full Text PDFHydroxyalkenals are lipid oxidation end-products resulting from the oxidation of polyunsaturated fatty acids (PUFA). This study aimed at quantifying the production of 4-hydroxy-2-nonenal-protein adducts (HNE-P) via Michael addition from n-6 PUFA oxidation in the gastric digesta of mini-pigs after the consumption of meat-based meals with different plant antioxidant contents. Using the accuracy profile procedure, we validated an extraction protocol for the quantification of HNE-P by GC-MS/MS in gastric contents.
View Article and Find Full Text PDFIsoprostanoids are a group of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids. It belongs to oxylipins group, which are important lipid mediators in biological processes, such as tissue repair, blood clotting, blood vessel permeability, inflammation and immunity regulation. Recently, isoprostanoids from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively have attracted attention because of their putative contribution to health.
View Article and Find Full Text PDFThe anti-inflammatory properties of DHA have been largely demonstrated in vitro and in vivo but research gaps remain regarding the contribution of the oxygenated metabolites. Among them, we are focusing on prostaglandin-like molecules termed Neuroprostanes (NeuroPs) which are produced through free-radical-mediated peroxidation of DHA. We hypothesized that these specific molecules which are highly reactive and produced in abundance during oxidative stress and inflammation could contribute to the anti-inflammatory properties of DHA.
View Article and Find Full Text PDFSkeletal muscle plays a major role in the control of whole body glucose disposal in response to insulin stimulus. Excessive supply of fatty acids to this tissue triggers cellular and molecular disturbances leading to lipotoxicity, inflammation, mitochondrial dysfunctions, impaired insulin response and decreased glucose uptake. This study was conducted to analyze the preventive effect of docosahexaenoic acid (DHA), a long-chain polyunsaturated n-3 fatty acid, against insulin resistance, lipotoxicity and inflammation in skeletal muscle at doses compatible with nutritional supplementation.
View Article and Find Full Text PDFCyclic oxygenated metabolites are formed in vivo through non-enzymatic free radical reaction of n-6 and n-3 polyunsaturated fatty acids (PUFAs) such as arachidonic (ARA C20:4 n-6), adrenic (AdA 22:4 n-6), α-linolenic (ALA 18:3 n-3), eicosapentaenoic (EPA 20:5 n-3) and docosahexaenoic (DHA 22:6 n-3) acids. These cyclic compounds are known as isoprostanes, neuroprostanes, dihomo-isoprostanes and phytoprostanes. Evidence has emerged for their use as biomarkers of oxidative stress and, more recently, the n-3PUFA-derived compounds have been shown to mediate bioactivities as secondary messengers.
View Article and Find Full Text PDFThe omega-3 fatty acid docosahexaenoic acid (DHA) has potent anti-atherogenic properties but its mechanisms of action at the vascular level remain poorly explored. Knowing the broad range of molecular targets of omega-3 fatty acids, microarray analysis was used to open-mindedly evaluate the effects of DHA on aorta gene expression in LDLR(-/-) mice and better understand its local anti-atherogenic action. Mice were fed an atherogenic diet and received daily oral gavages with oils rich in oleic acid or DHA.
View Article and Find Full Text PDFThe anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention.
View Article and Find Full Text PDFRapeseeds are naturally rich in cardioprotective micronutrients but refining leads to substantial losses or the production of undesirable compounds. The Optim'Oils European project proposed innovative refining conditions to produce an optimized rapeseed oil enriched in micronutrients and low in trans linolenic acid. We aimed to investigate cardioprotective properties of this Optimized oil.
View Article and Find Full Text PDFRespir Physiol Neurobiol
December 2011
Long-chain (LC) n-3 PUFA have a broad range of biological properties that can be achieved at the gene expression level. This has been well described in liver, where LC n-3 PUFA modulate the expression of genes related to lipid metabolism. However, the complexity of biological pathway modulations and the nature of bioactive molecules are still under investigation.
View Article and Find Full Text PDF