Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation.
View Article and Find Full Text PDFAltered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes.
View Article and Find Full Text PDFYes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line.
View Article and Find Full Text PDFFlotillins 1 and 2 are two ubiquitous, highly conserved homologous proteins that assemble to form heterotetramers at the cytoplasmic face of the plasma membrane in cholesterol- and sphingolipid-enriched domains. Flotillin heterotetramers can assemble into large oligomers to form molecular scaffolds that regulate the clustering of at the plasma membrane and activity of several receptors. Moreover, flotillins are upregulated in many invasive carcinomas and also in sarcoma, and this is associated with poor prognosis and metastasis formation.
View Article and Find Full Text PDFDirectional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM).
View Article and Find Full Text PDFTumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated.
View Article and Find Full Text PDFZebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of skeletal muscle origin in children and adolescents. Among RMS subtypes, alveolar rhabdomyosarcoma (ARMS), which is characterized by the presence of the PAX3-FOXO1A or PAX7-FOXO1A chimeric oncogenic transcription factor, is associated with poor prognosis and a strong risk of metastasis compared with the embryonal subtype (ERMS). To identify molecular pathways involved in ARMS aggressiveness, we first characterized the migratory behavior of cell lines derived from ARMS and ERMS biopsies using a three-dimensional spheroid cell invasion assay.
View Article and Find Full Text PDFThis commentary addresses the role of P-cadherin in collective cell migration (CCM), a cooperative and coordinated migration mode, used by cells during normal and pathological migration processes. We discuss how cadherin-mediated cell-cell junctions (CCJs) play a critical role in CCM through their ability to regulate Rho GTPase-dependent pathways and how this leads to the generation and orientation of mechanical forces. We will also highlight the key function of P-cadherin (a poor prognostic marker in several tumors) in promoting collective cell movement in epithelial and mesenchymal cells.
View Article and Find Full Text PDFControlling the different steps of cell differentiation in vitro using bioactive surfaces may be useful in view of future cell therapies. Substrates presenting peptides, which are minimal fragments of extracellular matrix (ECM) proteins may be used for this purpose. In this work, we used polyelectrolyte multilayer films presenting two peptides derived from different muscle ECM proteins to target syndecan or/and integrin receptors.
View Article and Find Full Text PDFCollective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell-cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces.
View Article and Find Full Text PDFAccumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner.
View Article and Find Full Text PDFFlotillin 1 and 2 are ubiquitous and highly conserved proteins. They were initially discovered in 1997 as being associated with specific caveolin-independent cholesterol- and glycosphingolipid-enriched membrane microdomains and as being expressed during axon regeneration. Flotillins have a role in a large number of physiopathological processes, mainly through their function in membrane receptor clustering and in the regulation of clathrin-independent endocytosis.
View Article and Find Full Text PDFCadherins are essential in many fundamental processes and assemble at regions of cell-cell contact in large macromolecular complexes named adherens junctions. We have identified flotillin 1 and 2 as new partners of the cadherin complexes. We show that flotillins are localised at cell-cell junctions (CCJs) in a cadherin-dependent manner.
View Article and Find Full Text PDFSkeletal muscle tissue engineering holds promise for the replacement of muscle damaged by injury and for the treatment of muscle diseases. Although arginylglycylaspartic acid (RGD) substrates have been widely explored in tissue engineering, there have been no studies aimed at investigating the combined effects of RGD nanoscale presentation and matrix stiffness on myogenesis. In the present work we use polyelectrolyte multilayer films made of poly(L-lysine) (PLL) and poly(L-glutamic) acid (PGA) as substrates of tunable stiffness that can be functionalized by a RGD adhesive peptide to investigate important events in myogenesis, including adhesion, migration, proliferation and differentiation.
View Article and Find Full Text PDFCadherins are homophilic cell-cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell-cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered.
View Article and Find Full Text PDFPolyelectrolyte multilayer coatings have emerged as substrates to control a variety of cell behaviour, including adhesion, proliferation and differentiation. In particular, it is possible to modulate film stiffness by physical or chemical cross-linking. In this study, we evaluate the adhesive behaviour of skeletal muscle cells (C2C12 myoblasts) during the initial steps of spreading on layer-by-layer films of controlled stiffness made of poly(L-lysine) and hyaluronan as model biomaterial surfaces for muscle tissue engineering.
View Article and Find Full Text PDFp120 catenin is a major regulator of cadherin stability at cell-cell contacts and a modulator of Rho GTPase activities. In C2C12 myoblasts, N-cadherin is stabilized at cell contacts through its association with cholesterol-rich membrane domains or lipid rafts (LR) and acts as an adhesion-activated receptor that activates RhoA, an event required for myogenesis induction. Here, we report that association of p120 catenin with N-cadherin at cell contacts occurs specifically in LR.
View Article and Find Full Text PDFIn the pituitary gland, activated protein kinase C (PKC) isoforms accumulate either selectively at the cell-cell contact (alpha and epsilon) or at the entire plasma membrane (beta1 and delta). The molecular mechanisms underlying these various subcellular locations are not known. Here, we demonstrate the existence within PKCepsilon of a cell-cell contact targeting sequence (3CTS) that, upon stimulation, is capable of targeting PKCdelta, chimerin-alpha1, and the PKCepsilon C1 domain to the cell-cell contact.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2009
Up-regulation of utrophin, a homolog of dystrophin, is known to ameliorate the dystrophic phenotype in animal models of Duchenne muscular dystrophy. We have previously demonstrated that the active form of RhoA (RhoAV14) increases the expression of utrophin and its localization at the plasma membrane in cultured myoblasts. In this paper, we ask whether RhoAV14 can up-regulate utrophin also in mice.
View Article and Find Full Text PDFDuring the embryonic development of the hindbrain, movements of neuronal clusters allow the formation of mature "pools", in particular for inferior olivary (ION) and facial motor (fMN) nuclei. The cellular mechanisms of neuron clustering remain uncharacterized. We report that the absence of the Rho-guanine exchange factor Trio, which can activate both RhoG and Rac1 in vivo, prevents the proper formation of ION and fMN subnuclei.
View Article and Find Full Text PDFBackground Information: N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in the induction of the skeletal muscle differentiation programme. However, the molecular mechanisms which govern the formation of N-cadherin-dependent cell-cell contacts in myoblasts remain unexplored.
Results: In the present study, we show that N-cadherin-dependent cell contact formation in myoblasts is defined by two stages.
Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes.
View Article and Find Full Text PDF