Extracellular soluble algal organic matter (AOM) significantly interferes with microalgae flocculation. This study investigated the effects of various AOM fractions on Chlorella sp. flocculation using ferric chloride (FeCl), sodium hydroxide (NaOH), and chitosan.
View Article and Find Full Text PDFMicroalgae show great promise for producing valuable molecules like biofuels, but their large-scale production faces challenges, with harvesting being particularly expensive due to their low concentration in water, necessitating extensive treatment. While methods such as centrifugation and filtration have been proposed, their efficiency and cost-effectiveness are limited. Flotation, involving air-bubbles lifting microalgae to the surface, offers a viable alternative, yet the repulsive interaction between bubbles and cells can hinder its effectiveness.
View Article and Find Full Text PDFBiofouling is a persistent problem in many sectors (healthcare, medicine, marine, and membrane filtration processes). To control the biofouling of surfaces, it is essential to overcome or reduce the adhesion forces between biofilms and surfaces. To access and understand the molecular basis of these interactions, atomic force microscopy (AFM) is a well-suited technology that can measure adhesion forces at the piconewton level.
View Article and Find Full Text PDFAggregation of diatoms is of global importance to understand settling of particulate organic carbon in aquatic systems. In this study, we investigate the aggregation of the marine diatom Cylindrotheca closterium during the exponential growth phase under hypo-saline conditions. The results of the flocculation/flotation experiments show that the aggregation of the diatom depends on the salinity.
View Article and Find Full Text PDFThe aim of this biophysical study is to characterize reconstructed membrane vesicles obtained from microalgae in terms of their morphology, properties, composition, and ability to transport a model drug. The reconstructed vesicles were either emptied or non-emptied and exhibited a non-uniform distribution of spherical surface structures that could be associated with surface coat proteins, while in between there were pore-like structures of up to 10 nm that could contribute to permeability. The reconstructed vesicles were very soft and hydrophilic, which could be attributed to their composition.
View Article and Find Full Text PDFPlastic pollution has become a significant concern in aquatic ecosystems, where photosynthetic microorganisms such as microalgae represent a major point of entry in the food chain. For this reason an important challenge is to better understand the consequences of plastic pollution on microalgae and the mechanisms underlying the interaction between plastic particles and cell's interfaces. In this study, to answer such questions, we developed an interdisciplinary approach to investigate the role of plastic microparticles in the aggregation of a freshwater microalgae species, Chlorella vulgaris.
View Article and Find Full Text PDFCells that grow in confined spaces eventually build up mechanical compressive stress. This growth-induced pressure (GIP) decreases cell growth. GIP is important in a multitude of contexts from cancer, to microbial infections, to biofouling, yet our understanding of its origin and molecular consequences remains limited.
View Article and Find Full Text PDFBackground: Fish skin represents an ancient vertebrate mucosal surface, sharing characteristics with other mucosal surfaces including those of the intestine. The skin mucosa is continuously exposed to microbes in the surrounding water and is therefore important in the first line defense against environmental pathogens by preventing bacteria from accessing the underlying surfaces. Understanding the microbe-host interactions at the fish skin mucosa is highly relevant in order to understand and control infection, commensalism, colonization, persistence, infection, and disease.
View Article and Find Full Text PDFUnderstanding the molecular mechanisms underlying bubble-(bio)surfaces interactions is currently a challenge that if overcame, would allow to understand and control the various processes in which they are involved. Atomic force microscopy is a useful technique to measure such interactions, but it is limited by the large size and instability of the bubbles that it can use, attached either on cantilevers or on surfaces. We here present new developments where microsized and stable bubbles are produced using FluidFM technology, which combines AFM and microfluidics.
View Article and Find Full Text PDFCandida glabrata is an opportunistic pathogen that adheres to human epithelial mucosa and forms biofilm to cause persistent infections. In this work, Single-cell Force Spectroscopy (SCFS) was used to glimpse at the adhesive properties of C. glabrata as it interacts with clinically relevant surfaces, the first step towards biofilm formation.
View Article and Find Full Text PDFThe method presented in this paper aims to automate Bio-AFM experiments and the recording of force curves. Using this method, it is possible to record forces curves on 1000 cells in 4 hours automatically. To maintain a 4 hour analysis time, the number of force curves per cell is reduced to 9 or 16.
View Article and Find Full Text PDFLactic acid bacteria, in particular Lactococcus lactis, are widely used in the food industry, for the control and/or the protection of the manufacturing processes of fermented food. While L. lactis has been reported to form compact and uniform biofilms it was recently shown that certain strains able to display pili at their surface form more complex biofilms exhibiting heterogeneous and aerial structures.
View Article and Find Full Text PDFThe attachment of bacteria and other microbes to natural and artificial surfaces leads to the development of biofilms, which can further cause nosocomial infections. Thus, an important field of research is the development of new materials capable of preventing the initial adhesion of pathogenic microorganisms. In this work, novel polymer/particle composite materials, based on a polythiourethane (PTU) matrix and either spherical (s-ZnO) or tetrapodal (t-ZnO) shaped ZnO fillers, were developed and characterized with respect to their mechanical, chemical and surface properties.
View Article and Find Full Text PDFMicroalgae are a promising resource for biofuel production, although their industrial use is limited by the lack of effective harvesting techniques. Flocculation consists in the aggregation and adhesion of cells into flocs that can be more easily removed from water than individual cells. Although it is an efficient harvesting technique, contamination is a major issue as chemical flocculants are often used.
View Article and Find Full Text PDFIn microalgae harvesting, flocculation is usually a compulsory preliminary step to further separation by sedimentation or flotation. For some microalgae species, and under certain growth conditions, flocculation can occur naturally. Natural flocculation presents many advantages as it does not require the addition of any flocculants to the culture medium and shows high efficiency rate.
View Article and Find Full Text PDFCell surface proteins of Gram-positive bacteria play crucial roles in their adhesion to abiotic and biotic surfaces. Pili are long and flexible proteinaceous filaments known to enhance bacterial initial adhesion. They promote surface colonization and are thus considered as essential factors in biofilm cohesion.
View Article and Find Full Text PDFDunaliella salina is a green microalgae species industrially exploited for its capacity to produce important amounts of carotenoid pigments. However in low nitrogen conditions in which they produce these pigments, their concentration is low, which results in harvesting difficulties and high costs. In this work, we propose a new solution to efficiently harvest D.
View Article and Find Full Text PDFThe zoonotic pathogen is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites.
View Article and Find Full Text PDFBacterial adhesion is currently the subject of increased interest from the research community, leading to fast progress in our understanding of this complex phenomenon. Resent research within this field has documented the important roles played by glycans for bacterial surface adhesion, either through interaction with lectins or with other glycans. In parallel with this increased interest for and understanding of bacterial adhesion, there has been a growth in the sophistication and use of sensitive force probes for single-molecule and single cell studies.
View Article and Find Full Text PDFAntimicrobial molecules have been used for more than 50 years now and are the basis of modern medicine. No surgery can nowdays be imagined to be performed without antibiotics; dreadful diseases like tuberculosis, leprosis, siphilys, and more broadly all microbial induced diseases, can be cured only through the use of antimicrobial treatments. However, the situation is becoming more and more complex because of the ability of microbes to adapt, develop, acquire, and share mechanisms of resistance to antimicrobial agents.
View Article and Find Full Text PDFskin infection is a frequent and recurrent problem in children with the common inflammatory skin disease atopic dermatitis (AD). colonizes the skin of the majority of children with AD and exacerbates the disease. The first step during colonization and infection is bacterial adhesion to the cornified envelope of corneocytes in the outer layer, the stratum corneum.
View Article and Find Full Text PDFforms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide.
View Article and Find Full Text PDFCharacterization of the molecular interactions between microbial cells and the human skin is essential to understand the functions of the skin microbiome, and to gain insight into the molecular basis of skin disorders. Although various molecular approaches have been used to study microbe-skin interactions, the underlying molecular forces were not accessible to study. Here we present a novel atomic force microscopy approach to localize and quantify the nanoscale interaction forces between the bacterial pathogen Staphylococcus aureus and human skin.
View Article and Find Full Text PDF